2023届浙江省温州市瑞安市重点达标名校中考考前最后一卷数学试卷含解析.doc

上传人:lil****205 文档编号:87839652 上传时间:2023-04-18 格式:DOC 页数:18 大小:795.50KB
返回 下载 相关 举报
2023届浙江省温州市瑞安市重点达标名校中考考前最后一卷数学试卷含解析.doc_第1页
第1页 / 共18页
2023届浙江省温州市瑞安市重点达标名校中考考前最后一卷数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届浙江省温州市瑞安市重点达标名校中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省温州市瑞安市重点达标名校中考考前最后一卷数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1拒绝“餐桌浪费”,刻不容缓节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年“”这个数据用科学记数法表示为( )A B C D.2下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对

2、称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A1个 B2个 C3个 D4个3如图,在正方形OABC中,点A的坐标是(3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A(2,4),(1,3)B(2,4),(2,3)C(3,4),(1,4)D(3,4),(1,3)4如图,已知点A在反比例函数y上,ACx轴,垂足为点C,且AOC的面积为4,则此反比例函数的表达式为()AyByCyDy5下列各数中负数是()A(2) B|2| C(2)2 D(2)36超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减

3、10元,经两次降价后售价为90元,则得到方程()A0.8x10=90B0.08x10=90C900.8x=10Dx0.8x10=907某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)8运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD9已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有()A4个B5个C6个D7个10估算的值是在()A2和3之间B3和4之间C4和5之间D5和6之间二、填

4、空题(本大题共6个小题,每小题3分,共18分)11如图,O的半径为6,四边形ABCD内接于O,连接OB,OD,若BOD=BCD,则弧BD的长为_12如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了_结果保留根号13如图,正方形ABCD边长为3,连接AC,AE平分CAD,交BC的延长线于点E,FAAE,交CB延长线于点F,则EF的长为_14把16a3ab2因式分解_15已知,在RtABC中,C=90,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=

5、31将CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是ABC的平分线,此时线段CD的长是_.16如图,在ABC中,C90,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似三、解答题(共8题,共72分)17(8分)如图,AOB=90,反比例函数y=(x0)的图象过点A(1,a),反比例函数y=(k0,x0)的图象过点B,且ABx轴(1)求a和k的值;(2)过点B作MNOA,交x轴于点M,交y轴于点N,交双曲线y=

6、于另一点C,求OBC的面积18(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?19(8分)如图,AB、AD是O的弦,ABC是等腰直角三角形,ADCAE

7、B,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BFAC20(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度21(8分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF22(10分)某

8、工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成23(12分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F(1)证明:BOEDOF;(2)当EFAC时,求证四边形AECF是菱形24已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:; 若, 求的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|

9、10,n为整数,据此判断即可【详解】32400000=3.24107元故选C【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键2、C【解析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握3、A【解析】作CDx

10、轴于D,作AEx轴于E,作BFAE于F,由AAS证明AOEOCD,得出AE=OD,OE=CD,由点A的坐标是(3,1),得出OE=3,AE=1,OD=1,CD=3,得出C(1,3),同理:AOEBAF,得出AE=BF=1,OEBF=31=2,得出B(2,4)即可【详解】解:如图所示:作CDx轴于D,作AEx轴于E,作BFAE于F,则AEO=ODC=BFA=90,OAE+AOE=90四边形OABC是正方形,OA=CO=BA,AOC=90,AOE+COD=90,OAE=COD在AOE和OCD中,AOEOCD(AAS),AE=OD,OE=CD点A的坐标是(3,1),OE=3,AE=1,OD=1,CD

11、=3,C(1,3)同理:AOEBAF,AE=BF=1,OEBF=31=2,B(2,4)故选A【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键4、C【解析】由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.【详解】SAOC=4,k=2SAOC=8;y=;故选C【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;5、B【解析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可【详

12、解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数故选B【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键6、A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可 设某种书包原价每个x元,可得:0.8x10=90考点:由实际问题抽象出一元一次方程7、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),

13、k=-23=-6,而2(-3)=-6,(-3)(-3)=9,23=6,-46=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k8、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD

14、、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键9、A【解析】依据不等式组至少有两个整数解,即可得到a5,再根据存在以3,a,7为边的三角形,可得4a10,进而得出a的取值范围是5a10,即可得到a的整数解有4个【详解】解:解不等式,可得xa,解不等式,可得x4,不等式组至少有两个整数解,a5,又存在以3

15、,a,7为边的三角形,4a10,a的取值范围是5a10,a的整数解有4个,故选:A【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了10、C【解析】求出,推出45,即可得出答案【详解】,45,的值是在4和5之间故选:C【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出,题目比较好,难度不大二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】根据圆内接四边形对角互补可得BCD+A=180,再根据同弧所对的圆周角与圆心角的关系以及BOD=BCD,可求得A=60

16、,从而得BOD=120,再利用弧长公式进行计算即可得.【详解】解:四边形ABCD内接于O,BCD+A=180,BOD=2A,BOD=BCD,2A+A=180,解得:A=60,BOD=120,的长=,故答案为4.【点睛】本题考查了圆周角定理、弧长公式等,求得A的度数是解题的关键.12、【解析】根据题意画出图形,进而利用锐角三角函数关系得出答案【详解】解:如图1所示:过点A作于点D,由题意可得:,则是等边三角形,故BC,则,如图2所示:过点A作于点E,由题意可得:,则是等腰直角三角形,则,故梯子顶端离地面的高度AD下降了故答案为:【点睛】此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三

17、角函数关系分析是解题关键13、6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得CAE=E,易得CE=CA,由FAAE,可得FAC=F,易得CF=AC,可得EF的长【详解】解:四边形ABCD为正方形,且边长为3, AC=3, AE平分CAD, CAE=DAE,ADCE, DAE=E, CAE=E, CE=CA=3, FAAE,FAC+CAE=90,F+E=90, FAC=F, CF=AC=3,EF=CF+CE=3+3=614、a(4a+b)(4ab)【解析】首先提取公因式a,再利用平方差公式分解因式得出答案【详解】解:16a3-ab2=a(16a2-b2)=a

18、(4a+b)(4a-b)故答案为:a(4a+b)(4a-b)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键15、2【解析】分析:设CD=3x,则CE=1x,BE=121x,依据EBF=EFB,可得EF=BE=121x,由旋转可得DF=CD=3x,再根据RtDCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+121x)2,进而得出CD=2详解:如图所示,设CD=3x,则CE=1x,BE=121x=,DCE=ACB=90,ACBDCE,DEC=ABC,ABDE,ABF=BFE又BF平分ABC,ABF=CBF,EBF=EFB,EF=BE=121x,

19、由旋转可得DF=CD=3x在RtDCE中,CD2+CE2=DE2,(3x)2+(1x)2=(3x+121x)2,解得x1=2,x2=3(舍去),CD=23=2故答案为2 点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等16、4.8或【解析】根据题意可分两种情况,当CP和CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质分别求出时间t即可.【详解】CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;CP和CA是对应边时,CPQCAB,所

20、以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.三、解答题(共8题,共72分)17、(1)a=2,k=8(2) =1.【解析】分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AEx轴于E,BFx轴于F,根据相似三角形的性质得到B(4,2),于是得到k=42=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论详解:(1)反比例函数y=(x0)的图象过点A(1,a),a=2,A(1,2),过A作AE

21、x轴于E,BFx轴于F,AE=2,OE=1,ABx轴,BF=2,AOB=90,EAO+AOE=AOE+BOF=90,EAO=BOF,AEOOFB,OF=4,B(4,2),k=42=8;(2)直线OA过A(1,2),直线AO的解析式为y=2x,MNOA,设直线MN的解析式为y=2x+b,2=24+b,b=10,直线MN的解析式为y=2x+10,直线MN交x轴于点M,交y轴于点N,M(5,0),N(0,10),解得,C(1,8),OBC的面积=SOMNSOCNSOBM=51010152=1点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析

22、式,三角形的面积的计算,正确的作出辅助线是解题的关键18、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人【解析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查(2)最喜欢足球活动的有10人,最喜欢足球活动的人占被调查人数的20% (3)全校学生人数:400(130%24%26%)=40020%=2000(人)则全校学生中最喜

23、欢篮球活动的人数约为2000=720(人)【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.19、见解析.【解析】(1)画出O的两条直径,交点即为圆心O(2)作直线AO交O于F,直线BF即为所求【详解】解:作图如下:(1);(2).【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20、米.【解析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】

24、由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a0),则据题意得:,解得:,羽毛球飞行的路线所在的抛物线的表达式为:y=x2+x+1,y=(x4)2+,飞行的最高高度为:米【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.21、(1)作图见解析;(2)证明见解析;【解析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得DEOBFO即可证得结论【详解】解:(1)如图:(2)四边形ABCD为矩形,ADBC,ADB=CBD,EF垂

25、直平分线段BD,BO=DO,在DEO和三角形BFO中,DEOBFO(ASA),DE=BF考点:1作图基本作图;2线段垂直平分线的性质;3矩形的性质22、 (1) 现在平均每天生产1台机器(2) 现在比原计划提前5天完成【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台依题意得:,解得:x=1检验x=1是原分式方程的解.(2)由题意得

26、=20-15=5(天)现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.23、(1)(2)证明见解析【解析】(1)根据矩形的性质,通过“角角边”证明三角形全等即可;(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形【详解】(1)证明:四边形ABCD是矩形,OB=OD,AECF,E=F(两直线平行,内错角相等),在BOE与DOF中,BOEDOF(AAS)(2)证明:四边形ABCD是矩形,OA=OC,又由(1)BOEDOF得,OE=OF,四边形AECF是平行四边形,又EFAC,四边形AECF是菱形24、(1)详见解析;(2)【解析】(1)根据题意平分可得,从而证明即可解答(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答【详解】(1)证明:平分又又(2)四边形是平行四边形, 为等边三角形过点作延长线于点.在中,【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁