《2023届重庆市长寿区名校中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届重庆市长寿区名校中考数学对点突破模拟试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若一个多边形的内角和为360,则这个多边形的边数是( )A3B4C5D62为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A极差是
2、3B众数是4C中位数40D平均数是20.53下列说法中不正确的是()A全等三角形的周长相等 B全等三角形的面积相等C全等三角形能重合 D全等三角形一定是等边三角形4如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)5下列因式分解正确的是( )Ax2+9=(x+3)2Ba2+2a+4=(a+2)2Ca3-4a2=a2(a-4)D1-4x2=(1+4x)(1-4x)6如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(1,2),且
3、与x轴交点的横坐标分别为x1、x2,其中2x11,0x21下列结论:4a2b+c0;2ab0;abc0;b2+8a4ac其中正确的结论有()A1个B2个C3个D4个7随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD8如图,在中,点D为AC边上一点,则CD的长为( )A1BC2D9已知一个多边形的内角和是外角和的3倍,则这个多边形是()A五边形B六边形C七边形D八边形10一个几何体的三视图如图所示,这个几何体是( )A三菱柱B三棱锥C长方体D圆柱体11如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定12如图,菱形
4、OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上反比例函数(x0)的图象经过顶点B,则k的值为A12B20C24D32二、填空题:(本大题共6个小题,每小题4分,共24分)13如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_14如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm175cm之间的人数约有_人15如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航
5、行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_km16如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_17如图,已知一块圆心角为270的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_cm18利用1个aa的正方形,1个bb的正方形和2个ab的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已
6、知二次函数 ymx22mx+n 的图象经过(0,3)(1)n _;(2) 若二次函数 ymx22mx+n 的图象与 x 轴有且只有一个交点,求 m 值;(3) 若二次函数 ymx22mx+n 的图象与平行于 x 轴的直线 y5 的一个交点的横坐标为4,则另一个交点的坐标为 ;(4) 如图,二次函数 ymx22mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求PAC 面积的最大值20(6分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接A
7、G,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必说明理由21(6分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,
8、连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标22(8分)已知:如图,E,F是ABCD的对角线AC上的两点,BEDF.求证:AFCE23(8分)如图,AB是O的直径,弦DE交AB于点F,O的切线BC与AD的延长线交于点C,连接AE(1)试判断AED与C的数量关系,并说明理由;(2)若AD=3,C=60,点E是半圆AB的中点,则线段AE的长为 24(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角EAD为45,在B点测得D点的仰角CBD为60.求这两座建筑
9、物的高度(结果保留根号).25(10分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0)抛物线经过A、C两点,与AB边交于点D(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S求S关于m的函数表达式,并求出m为何值时,S取得最大值;当S最大时,在抛物线的对称轴l上若存在点F,使FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由26(12分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销
10、一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为w元求w与x之间的函数关系式该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?27(12分)已知P是O外一点,PO交O于点C,OC=CP=2,弦ABOC,AOC的度数为60,连接PB求BC的长;求证:PB是O的切线参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只
11、有一项是符合题目要求的)1、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)180=360, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.2、C【解析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+302+404+502+60)10=40.5,
12、故本选项错误;故选:C【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念3、D【解析】根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.【点睛】本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.4、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A5、C【解析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(12
13、x)故选C,考点:因式分解【详解】请在此输入详解!6、C【解析】首先根据抛物线的开口方向可得到a0,抛物线交y轴于正半轴,则c0,而抛物线与x轴的交点中,2x11、0x21说明抛物线的对称轴在10之间,即x=1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】由图知:抛物线的开口向下,则a0;抛物线的对称轴x=1,且c0; 由图可得:当x=2时,y0,即4a2b+c0,故正确; 已知x=1,且a0,所以2ab0,故正确; 抛物线对称轴位于y轴的左侧,则a、b同号,又c0,故abc0,所以不正确; 由于抛物线的对称轴大于1,所以抛物线的顶点纵坐标应该大于2,即:2,由于a0,所以4
14、acb28a,即b2+8a4ac,故正确; 因此正确的结论是 故选:C【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键7、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.8、C【解析】根据DBC=A,C=C,判定BCDACB,根据相似三角形
15、对应边的比相等得到代入求值即可.【详解】DBC=A,C=C,BCDACB, CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.9、D【解析】根据多边形的外角和是360,以及多边形的内角和定理即可求解【详解】设多边形的边数是n,则(n2)180=3360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.10、A【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱故选:B【点睛】此题主要考查了学生对三视图掌握程度和灵
16、活运用能力,同时也体现了对空间想象能力方面的考查11、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键12、D【解析】如图,过点C作CDx轴于点D,点C的坐标为(3,4),OD=3,CD=4.根据勾股定理,得:OC=5.四边形OABC是菱形,点B的坐标为(8,4).点B在反比例函数(x0)的图象上,.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先利用旋转的性质得到BCBD,CEDB,AE,CBDABE,再利用等腰三角形的性
17、质和三角形内角和定理证明ABDA,则BDAD,然后证明BDCABC,则利用相似比得到BC:ABCD:BC,即BF:(AFBF)AF:BF,最后利用解方程求出AF与BF的比值.【详解】如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,BCBD,CEDB,AE,CBDABE,ABEADF,CBDADF,DBBF,BFBDBC,而CEDB,CBDABD,ABCC2ABD,BDCAABD,ABDA,BDAD,CDAF,ABAC,ABCCBDC,BDCABC,BC:ABCD:BC,即BF:(AFBF)AF:BF,整理得AF2BFAFBF20,AFBF,即AF与BF的比值为.故答案是.【点睛】本题主
18、要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.14、1【解析】用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例【详解】估计该校男生的身高在170cm-175cm之间的人数约为300=1(人),故答案为1【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题15、40【解析】首先证明PBBC,推出C30,可得PC2PA,求出PA即可解决问题【详解】解:在RtPAB中,APB30,PB2AB,由题意BC2AB,PBBC,C
19、CPB,ABPC+CPB60,C30,PC2PA,PAABtan60,PC22040(km),故答案为40【点睛】本题考查解直角三角形的应用方向角问题,解题的关键是证明PBBC,推出C3016、+1【解析】根据对称性可知:GJBH,GBJH,四边形JHBG是平行四边形,JH=BG,同理可证:四边形CDFB是平行四边形,CD=FB,FG+JH+CD=FG+BG+FB=2BF,设FG=x,AFG=AFB,FAG=ABF=36,AFGBFA,AF2=FGBF,AF=AG=BG=1,x(x+1)=1,x=(负根已经舍弃),BF=+1=,FG+JH+CD=+1故答案为+117、40cm【解析】首先根据圆
20、锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可【详解】圆锥的底面直径为60cm,圆锥的底面周长为60cm,扇形的弧长为60cm,设扇形的半径为r,则=60,解得:r=40cm,故答案为:40cm【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解18、a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为ab,面积为(ab)1,所以a11abb1(ab)1点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面
21、积关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(2)2;(2)m=2;(2)(2,5);(4)当a=时,PAC的面积取最大值,最大值为【解析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线
22、AC的解析式,过点P作PDx轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出SACP关于a的函数关系式,配方后即可得出PAC面积的最大值【详解】解:(2)二次函数y=mx22mx+n的图象经过(0,2),n=2故答案为2(2)二次函数y=mx22mx2的图象与x轴有且只有一个交点,=(2m)24(2)m=4m2+22m=0,解得:m2=0,m2=2m0,m=2(2)二次函数解析式为y=mx22mx2,二次函数图象的对称轴为直线x=2该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,另一交点
23、的横坐标为224=2,另一个交点的坐标为(2,5)故答案为(2,5)(4)二次函数y=mx22mx2的图象经过点A(2,0),0=9m6m2,m=2,二次函数解析式为y=x22x2设直线AC的解析式为y=kx+b(k0),将A(2,0)、C(0,2)代入y=kx+b,得:,解得:,直线AC的解析式为y=x2过点P作PDx轴于点D,交AC于点Q,如图所示设点P的坐标为(a,a22a2),则点Q的坐标为(a,a2),点D的坐标为(a,0),PQ=a2(a22a2)=2aa2,SACP=SAPQ+SCPQ=PQOD+PQAD=a2+a=(a)2+,当a=时,PAC的面积取最大值,最大值为 【点睛】本
24、题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出SACP关于a的函数关系式20、(1)见解析;(1)30或150,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90即可;(1)在旋转过程中,OAG成为直角有两种情况:由0增大到90过程中,当OAG=90时,=30,由90增大到180过程中,当OAG=
25、90时,=150;当旋转到A、O、F在一条直线上时,AF的长最大,AF=AO+OF=+1,此时=315【详解】(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90,GAO+DEO=90,AHE=90,即DEAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG=90时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30,OAOD,OAAG,ODAG,DOG=AGO=30,即=30;()由90增大到180过程中,当OAG=9
26、0时,同理可求BOG=30,=18030=150.综上所述,当OAG=90时,=30或150.如图3,当旋转到A.O、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45,此时=315.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用21、(1)y=x2x2;(2)9;(3)Q坐标为()或(4)或(2,1)或(4+,)【解析】试题分析:把点代入抛物线,求出的值即可.先用待定系
27、数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标, 最大值=,进而计算四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)在抛物线上, 解得 抛物线的解析式为 (2)过点P作轴交AD于点G, 直线BE的解析式为 ADBE,设直线AD的解析式为 代入,可得 直线AD的解析式为 设则 则 当x=1时,PG的值最大,最大值为2,由 解得 或 最大值= ADBE, S四边形APDE最大=SADP最大+ (3)如图31中,当时,作于T 可得 如图32中,当时, 当时, 当时,Q3综上所述,满足条件点点Q坐标为或或或22、参见解析
28、【解析】分析:先证ACB=CAD,再证出BECDFA,从而得出CE=AF详解:证明:平行四边形中,又, 点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.23、(1)AED=C,理由见解析;(2) 【解析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可【详解】(1)AED=C,证明如下:连接BD,可得ADB=90,C+DBC=90,CB是O的切线,CBA=90,ABD+DBC=90,ABD=C,AEB=ABD,AED=C,(2)连接BE,AEB=90,C=60,CAB=30,在RtDAB中,AD=3,ADB=90,cosDAB=,解得:AB=2,E是
29、半圆AB的中点,AE=BE,AEB=90,BAE=45,在RtAEB中,AB=2,ADB=90,cosEAB=,解得:AE=故答案为【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法24、甲建筑物的高AB为(3030)m,乙建筑物的高DC为30m【解析】如图,过A作AFCD于点F,在RtBCD中,DBC=60,BC=30m,=tanDBC,CD=BCtan60=30m,乙建筑物的高度为30m;在RtAFD中,DAF=45,DF=AF=BC=30m,AB=CF=CDDF=(3030)m,甲建筑物的高度为(3030)m25、(
30、1);(2),当m=5时,S取最大值;满足条件的点F共有四个,坐标分别为,【解析】(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;(2)先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;直接写出满足条件的F点的坐标即可,注意不要漏写【详解】解:(1)将A、C两点坐标代入抛物线,得 ,解得: ,抛物线的解析式为y=x2+x+8;(2)OA=8,OC=6,AC= =10,过点Q作QEBC与E点,则sinACB = = =, =,QE=(10m),S=CPQE=m(10m)=m2+3m;S=CPQE=m(10m)=m2+3m=(m5)2+,当m=5时,S取最大
31、值;在抛物线对称轴l上存在点F,使FDQ为直角三角形,抛物线的解析式为y=x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当FDQ=90时,F1(,8),当FQD=90时,则F2(,4),当DFQ=90时,设F(,n),则FD2+FQ2=DQ2,即+(8n)2+(n4)2=16,解得:n=6 ,F3(,6+),F4(,6),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6)【点睛】本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要
32、加强训练,属于中档题26、 (1);(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元【解析】(1)根据销售额=销售量销售价单x,列出函数关系式(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【详解】解:(1)由题意得:,w与x的函数关系式为:(2),20,当x=30时,w有最大值w最大值为2答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元(3)当w=150时,可得方程2(x
33、30)2+2=150,解得x1=25,x2=3328,x2=3不符合题意,应舍去答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元27、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定OBC的等边三角形,则BC=OC=2;(2)欲证明PB是O的切线,只需证得OBPB即可(1)解:如图,连接OBABOC,AOC=60,OAB=30,OB=OA,OBA=OAB=30,BOC=60,OB=OC,OBC的等边三角形,BC=OC又OC=2,BC=2;(2)证明:由(1)知,OBC的等边三角形,则COB=60,BC=OCOC=CP,BC=PC,P=CBP又OCB=60,OCB=2P,P=30,OBP=90,即OBPB又OB是半径,PB是O的切线考点:切线的判定