《2023届陕西省安康市名校中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届陕西省安康市名校中考数学四模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算结果是x5的为()Ax10x2
2、Bx6x Cx2x3 D(x3)22如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(),SABC=1,OF=5,点B的坐标为(2,2.5)A1个B2个C3个D4个3某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A参加本次植树活动共有30人B每人植树量的众数是4棵C每人植树量的中位数是5棵D每人植树量的平均数是5棵4的相反数是()AB-CD5下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子
3、,则图_中有个棋子( )A31B35C40D506在3,1,0,1四个数中,比2小的数是()A3B1C0D17如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则CEF的周长为( ) A12B16C18D248随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )ABCD9如图是几何体的三视图,该几何体是( )A圆锥B圆柱C三棱柱D三棱锥10实数的倒数是( )ABCD二、填空题(共
4、7小题,每小题3分,满分21分)11的倒数是 _12计算(2a)3的结果等于_133的倒数是_14如图,在RtABC中,ACB90,AB5,AC3,点D是BC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当DEB是直角三角形时,DF的长为_15数据2,0,1,2,5的平均数是_,中位数是_16甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过_秒,甲乙两点第一次在同一边上17有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中
5、随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_三、解答题(共7小题,满分69分)18(10分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理(1)填空_,_,数学成绩的中位数所在的等级_(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数如下分数段整理样本等级等级分数段各组总分人数48435741712根据上表绘制扇形统计图19(5分)先化简,再求值:,其中x520(8分)如图,抛物线与y轴交于A点,过点A的直线
6、与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由21(10分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有
7、两个不相等的实数根.22(10分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶由定义知,取AB中点N,连结MN,MN与AB的关系是_抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由23(12分)如图1,在四边形ABC
8、D中,ADBC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90得到PQ(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长24(14分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.求,的值;求四边形的面积.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:Ax10x2=x8,不符合题意;B
9、x6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C2、C【解析】如图,由平行线等分线段定理(或分线段成比例定理)易得:;设过点B且与y轴平行的直线交AC于点G,则SABC=SAGB+SBCG,易得:SAED,AEDAGB且相似比=1,所以,AEDAGB,所以,SAGB,又易得G为AC中点,所以,SAGB=SBGC=,从而得结论;易知,BG=DE=1,又BGCFEC,列比例式可得结论;易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以错误【详解】解:如图,OEAACC,且OA=1,OC=1,故 正确;设过点B且与y轴平行的直线
10、交AC于点G(如图),则SABC=SAGB+SBCG,DE=1,OA=1,SAED=11=,OEAAGB,OA=AB,AE=AG,AEDAGB且相似比=1,AEDAGB,SABG=,同理得:G为AC中点,SABG=SBCG=,SABC=1,故 正确;由知:AEDAGB,BG=DE=1,BGEF,BGCFEC,EF=1即OF=5,故正确;易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故错误;故选C【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力考查学生数形结合的数学思想方法3、
11、D【解析】试题解析:A、4+10+8+6+2=30(人),参加本次植树活动共有30人,结论A正确;B、108642,每人植树量的众数是4棵,结论B正确;C、共有30个数,第15、16个数为5,每人植树量的中位数是5棵,结论C正确;D、(34+410+58+66+72)304.73(棵),每人植树量的平均数约是4.73棵,结论D不正确故选D考点:1.条形统计图;2.加权平均数;3.中位数;4.众数4、C【解析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.5、C【解析】根据题意得出第
12、n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+12个,图2中棋子有10=1+2+3+22个,图3中棋子有16=1+2+3+4+32个,图6中棋子有1+2+3+4+5+6+7+62=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况6、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这
13、四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.7、A【解析】解:四边形ABCD为矩形,AD=BC=10,AB=CD=8,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,AF=AD=10,EF=DE,在RtABF中,BF=6,CF=BC-BF=10-6=4,CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1故选A8、D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可详解:设乘公交车平均每小时走x千
14、米,根据题意可列方程为:故选D点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可9、C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案详解:几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又俯视图是一个三角形,故该几何体是一个三棱柱,故选C点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定10、D【解析】因为,所以的倒数是.故选D.二、填空题(共
15、7小题,每小题3分,满分21分)11、【解析】先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.12、8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方13、【解析】乘积为1的两数互为相反数,即a的倒数即为,符号一致【详解】3的倒数是 答案是14、或【解析】试题分析:如图4所示;点E与点C重合时在RtABC中,BC=4由翻折的性质可知;AE=AC=3、DC=DE则EB=2设DC=ED=x,则BD=4x在RtDBE中,DE2+BE2=DB2,即x2+22=(4x)2解得:x=DE=如图2所示:EDB=90时由翻折的性质可
16、知:AC=AC,C=C=90C=C=CDC=90,四边形ACDC为矩形又AC=AC,四边形ACDC为正方形CD=AC=3DB=BCDC=43=4DEAC,BDEBCA,即解得:DE=点D在CB上运动,DBC90,故DBC不可能为直角考点:翻折变换(折叠问题)15、0.8 0 【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数【详解】平均数=(2+01+2+5)5=0.8;把这组数据按从大到小的顺序排列是:5,2,0
17、,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.16、1【解析】试题分析:设x秒时,甲乙两点相遇根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为117、【解析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率【详解】解:列表如下:567895(6、5)(7、5)(8、5)(9、5)6(5、6)(7、6)(8、6)(9、6)7(5、7)(6、7)(8、7)(9、7)8(5、8)(6、8)(7、8
18、)(9、8)9(5、9)(6、9)(7、9)(8、9)所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)= 故答案为.【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比三、解答题(共7小题,满分69分)18、(1)6;8;B;(2)120人;(3)113分【解析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数【详解】(1)本次抽查的学生有:(人),数学
19、成绩的中位数所在的等级B,故答案为:6,11,B;(2)120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:(分),即A等级学生的数学成绩的平均分是113分【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答19、,-【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解: 当时,原式.点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.20、(1);(2) (0t3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,
20、平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式(2)用t表示P、M、N 的坐标,由等式得到函数关系式(3)由平行四边形对边相等的性质得到等式,求出t再讨论邻边是否相等【详解】解:(1)x=0时,y=1,点A的坐标为:(0,1),BCx轴,垂足为点C(3,0),点B的横坐标为3,当x=3时,y=,点B的坐标为(3,),设直线AB的函数关系式为y=kx+b, ,解得,则直线AB的函数关系式(2)当x=t时,y=t+1,点M的坐标为(t,t+1),当x=t时,点N的坐标为 (
21、0t3);(3)若四边形BCMN为平行四边形,则有MN=BC,解得t1=1,t2=2,当t=1或2时,四边形BCMN为平行四边形,当t=1时,MP=,PC=2,MC=MN,此时四边形BCMN为菱形,当t=2时,MP=2,PC=1,MC=MN,此时四边形BCMN不是菱形【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用21、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要
22、证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,该方程的一个根为1,.解得.a的值为,该方程的另一根为.(2),不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.22、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,
23、0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;
24、由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键23、(1) ;(2)5;(3)PB的值为或【解析】(1)如图1中,作AMCB用M,DNBC于N,根据题意易证RtABMRtDCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可
25、得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【详解】解:(1)如图1中,作AMCB用M,DNBC于NDNM=AMN=90,ADBC,DAM=AMN=DNM=90,四边形AMND是矩形,AM=DN,AB=CD=13,RtABMRtDCN,BM=CN,AD=11,BC=21,BM=CN=5,AM=12,在RtABM中,sinB=(2)如图2中,连接AC在RtACM中,AC=20,PB=PA,BE=EC,PE=AC=10,的长=5(3)如图3中,当点Q
26、落在直线AB上时,EPBAMB,=,=,PB=如图4中,当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G设PB=x,则AP=13xADBC,B=HAP,PG=x,PH=(13x),BG=x,PGEQHP,EG=PH,x=(13x),BP=综上所述,满足条件的PB的值为或【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.24、(1),.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)点在上,点在上,且,.过,两点,解得,.(2)如图,延长,交于点,则.轴,轴,.四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.