《2023届浙江省泉山市台商投资区重点名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省泉山市台商投资区重点名校中考二模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1图为一根圆柱形的空心钢管,它的主视图是( )ABCD2函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx33小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25
2、千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达若设走路线一时的平均速度为x千米/小时,根据题意,得ABCD4从中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()ABCD5关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B2C2D26如图,OAC和BAD都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点B,则OAC与BAD的面积之差SOACSBAD为()A36B12C6D37下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=D
3、y(x1)2x28如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定9图1和图2中所有的正方形都全等,将图1的正方形放在图2中的某一位置,所组成的图形不能围成正方体的位置是()ABCD10如图,等腰直角三角形的顶点A、C分别在直线a、b上,若ab,1=30,则2的度数为()A30B15C10D2011下列计算正确的是ABCD12如图,半O的半径为2,点P是O直径AB延长线上的一点,PT切O于点T,M是OP的中点,射线TM与半O交于点C若P20,则图中阴影部分的面积为()A1+B1+C2sin20+D二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在
4、平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上 b =_,c =_,点B的坐标为_;(直接填写结果)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标14化简的结果等于_15如图,在边长为1的正方形格点图中,B、D、E为格点,则BAC的正切值为_16若二次函数yx24xk的最大值是9,则k_17九章算术是中国传统数学最重要的著作
5、,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为_步18已知扇形的弧长为2,圆心角为60,则它的半径为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生
6、的成绩进行整理,得到下列不完整的统计图表组别分数段频次频率A60x70170.17B70x8030aC80x90b0.45D90x10080.08请根据所给信息,解答以下问题:(1)表中a=_,b=_;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率20(6分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的
7、值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?21(6分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数22(8分)计算:23(8分)如图,已知三角形ABC的边AB是0的切线,
8、切点为BAC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分ACE;(2)若BE=3,CE=4,求O的半径.24(10分)已知抛物线yax2bx若此抛物线与直线yx只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1)求此抛物线的解析式;以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y,若这两条抛物线有公共点,求n的取值范围;若a1,将此抛物线向上平移c个单位(c1),当xc时,y1;当1xc时,y1试比较ac与1的大小,并说明理由25(10分)某景区商店销售一种纪念品,每件的进货价为40元经市场调研,当该纪念品每件的销售价
9、为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润26(12分)如图,二次函数y+mx+4m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C抛物线的对称轴是直线x2,D是抛物线的顶点(1)求二次函数的表达式;(2)当x1时,请求出y的取值范围;(3)连接AD,线段OC上有一点E,点E关于直线x2的对称点E恰好在线段AD上,求点E的坐标27(12分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间
10、距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30,底端B的俯角为10,请你根据以上数据,求出楼AB的高度(精确到0.1米)(参考数据:sin100.17, cos100.98, tan100.18, 1.41, 1.73)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.2、D【解析】由题意得,x10,解得x1故选D3、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比
11、走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程解:设走路线一时的平均速度为x千米/小时,故选A4、C【解析】根据正方形的判定定理即可得到结论【详解】与左边图形拼成一个正方形,正确的选择为,故选C【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.5、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解】设方程的两根分别为x1,x1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1
12、舍去;当k=-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.6、D【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论解:设OAC和BAD的直角边长分别为a、b,则点B的坐标为(a+b,ab)点B在反比例函数的第一象限图象上,(a+b)(ab)=a2b2=1SOACSBAD=a2b2=(a2b2)=1=2故
13、选D点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2b2的值解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键7、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=x(x1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数
14、,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二次函数,据此求解即可.8、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点9、A【解
15、析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的的位置出现重叠的面,所以不能围成正方体,故选A【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形注意:只要有“田”字格的展开图都不是正方体的表面展开图10、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出ACD=60,即可得出2的度数详解:如图所示:ABC是等腰直角三角形,BAC=90,ACB=45,1+BAC=30+90=120,ab,ACD=180-120=60,2=ACD-ACB=60-45=15;故选B点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌
16、握等腰直角三角形的性质,由平行线的性质求出ACD的度数是解决问题的关键11、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键12、A【解析】连接OT、OC,可求得COM=30,作CHAP,垂足为H,则CH=1,于是,S阴影=SAOC+S扇形OCB,代入可得结论【详解】连接OT、OC,PT切O于点T,OTP=90,P=20,POT=70,M是OP的中点,T
17、M=OM=PM,MTO=POT=70,OT=OC,MTO=OCT=70,OCT=180-270=40,COM=30,作CHAP,垂足为H,则CH=OC=1,S阴影=SAOC+S扇形OCB=OACH+=1+,故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系二、填空题:(本大题共6个小题,每小题4分,共24分)13、(1),(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】(1)将
18、点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标【详解】解:(1)将点A和点C的坐标代入抛物线的解析式得:,解得:b=2,c=1,抛物线的解析式为令,解得:,点B的坐标为(1,0)故答案为2;1;(1,0)(2)存在理由:如图所示:当ACP1=9
19、0由(1)可知点A的坐标为(1,0)设AC的解析式为y=kx1将点A的坐标代入得1k1=0,解得k=1,直线AC的解析式为y=x1,直线CP1的解析式为y=x1将y=x1与联立解得,(舍去),点P1的坐标为(1,4)当P2AC=90时设AP2的解析式为y=x+b将x=1,y=0代入得:1+b=0,解得b=1,直线AP2的解析式为y=x+1将y=x+1与联立解得=2,=1(舍去),点P2的坐标为(2,5)综上所述,P的坐标是(1,4)或(2,5)(1)如图2所示:连接OD由题意可知,四边形OFDE是矩形,则OD=EF根据垂线段最短,可得当ODAC时,OD最短,即EF最短由(1)可知,在RtAOC
20、中,OC=OA=1,ODAC,D是AC的中点又DFOC,DF=OC=,点P的纵坐标是,解得:x=,当EF最短时,点P的坐标是:(,)或(,)14、【解析】先通分变为同分母分式,然后根据分式的减法法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键15、 【解析】根据圆周角定理可得BAC=BDC,然后求出tanBDC的值即可【详解】由图可得,BAC=BDC,O在边长为1的网格格点上,BE=3,DB=4,则tanBDC=tanBAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直
21、角三角形.16、5【解析】y=(x2)2+4+k,二次函数y=x24x+k的最大值是9,4+k=9,解得:k=5,故答案为:5.17、【解析】分析:由正方形的性质得到EDG=90,从而KDC+HDA=90,再由C+KDC=90,得到C=HDA,即有CKDDHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论详解:DEFG是正方形,EDG=90,KDC+HDA=90C+KDC=90,C=HDACKD=DHA=90,CKDDHA,CK:KD=HD:HA,CK:100=100:15,解得:CK=故答案为:点睛:本题考查了相似三角形的应用解题的关键是证明CKDDHA18、6.【解析】分
22、析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:,解得 :r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)0.3 ,45;(2)108;(3)【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为170.17=100(人),则a=0.3,b=1
23、000.45=45(人)故答案为0.3,45;(2)3600.3=108答:扇形统计图中B组对应扇形的圆心角为108(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,甲、乙两名同学都被选中的概率为=【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】(1)将点C的坐
24、标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得【详解】把C(6,-1)代入,得. 则反比例函数的解析式为,把代入,得,点D的坐标为(-2,3). 将C(6,-1)、D(-2,3)代入,得,解得.一次函数的解析式为,点B的坐标为(0,2),点A的坐标为(4,0). ,在在中,. 根据函数图象可知,当或时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交
25、点问题其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用21、 (1)200;(2)见解析;(3)126;(4)240人【解析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)喜欢文史类的人数为76人,占总人数的38%,此次调查的总人数为:7638%200人,故答案为200;(2)喜欢生活类书籍的人数占总人数的15%,喜
26、欢生活类书籍的人数为:20015%30人,喜欢小说类书籍的人数为:20024763070人,如图所示:(3)喜欢社科类书籍的人数为:24人,喜欢社科类书籍的人数占了总人数的百分比为:100%12%,喜欢小说类书籍的人数占了总分数的百分比为:100%15%38%12%35%,小说类所在圆心角为:36035%126;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:200012%240人【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键22、-1【解析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值
27、符号,再合并同类二次根式即可得【详解】原式=14+1=1【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.23、(1)证明见解析;(2). 【解析】试题分析:(1)证明:如图1,连接OB,由AB是0的切线,得到OBAB,由于CE丄AB,的OBCE,于是得到1=3,根据等腰三角形的性质得到1=2,通过等量代换得到结果(2)如图2,连接BD通过DBCCBE,得到比例式,列方程可得结果(1)证明:如图1,连接OB,AB是0的切线,OBAB,CE丄AB,OBCE,1=3,OB=OC,1=2,2=3,CB平分ACE;(2)如图2,连接
28、BD,CE丄AB,E=90,BC=5,CD是O的直径,DBC=90,E=DBC,DBCCBE,BC2=CDCE,CD=,OC=,O的半径=考点:切线的性质24、(1);n1;(2)ac1,见解析.【解析】(1)1求解b1,将点(3,1)代入平移后解析式,即可;顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入yax2bx+c得到acb+11,bac+1,当1xc时,y1. c,b2ac,ac+12ac,ac1;【详解】解:(1)ax2bxx,ax2(b+1)x1,(b+1)2
29、1,b1,平移后的抛物线ya(x1)2b(x1)过点(3,1),4a2b1,a,b1,原抛物线:yx2+x,其顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n由得:x2+2n1有解,所以n1(2)由题知:a1,将此抛物线yax2bx向上平移c个单位(c1),其解析式为:yax2bx+c过点(c,1),ac2bc+c1 (c1),acb+11,bac+1,且当x1时,yc,对称轴:x,抛物线开口向上,画草图如右所示由题知,当1xc时,y1c,b2ac,ac+12ac,ac1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图
30、象平移时改变位置,而a的值不变是解题的关键25、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价进价)销量”列出函数关系式,根据二次函数的性质,即可解答详解:(1)由题意得:20010(5250)=20020=180(件),故答案为180;(2)由题意得:y=(x40)20010(x50)=10x2+1100x28000=10(x55)2+2250每件销售价为55元时,获得最大利润;最大利润为2250元点睛:此题主要考查了二次函数的应用,根据已
31、知得出二次函数的最值是中考中考查重点,同学们应重点掌握26、(1)y=x11x+6;(1)y;(3)(0,4)【解析】(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可【详解】(1)抛物线对称轴为直线x=1,=1,即m=1,则二次函数解析式为y=x11x+6;(1)当x=时,y=;当x=1时,y=x1位于对称轴右侧,y随x的增大而减小,y;(3)当x=1时,y=8,顶点D的坐标是(1,8),令y=0,得到:x11x+6=0,解得:x=6或x=
32、1点A在点B的左侧,点A坐标为(6,0)设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11设E(0,n),则有E(4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4)【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键27、30.3米【解析】试题分析:过点D作DEAB于点E,在RtADE中,求出AE的长,在RtDEB中,求出BE的长即可得.试题解析:过点D作DEAB于点E,在RtADE中,AED=90,tan1=, 1=30,AE=DE tan1=40tan30=40401.7323.1 在RtDEB中,DEB=90,tan2=, 2=10,BE=DE tan2=40tan10400.18=7.2 AB=AE+BE23.1+7.2=30.3米