《2023届湖北省荆门市京山市初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省荆门市京山市初中数学毕业考试模拟冲刺卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD2将一把直尺与一块三角板如图所示放置,若则2的度数为( )A50B110C130D1503如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长
2、线于点,连接.若,则等于( )ABCD4若55+55+55+55+5525n,则n的值为()A10B6C5D35化简的结果为( )A1B1CD6抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)7如图,在RtABC中,ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为()ABCD8若点M(3,y1),N(4,y2)都在正比例函数y=k2x(k0)的图象上,则y1与y2的大小关系是()Ay1y2 By1y2 Cy1=y2 D不能确定9计算-5+1的结果为( )A-6B-4C4D6
3、10湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为()A42.4109B4.24108C4.24109D0.42410811空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )A0.129102B1.29102C1.29103D12.910112如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB15,ACD45,若l1、l2之间的距离为50m,则A、B之间的距离为()A50mB25mC(50)mD(5025)m二、填空题:(本大题共6个小题
4、,每小题4分,共24分)13从2,1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_14如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)15计算的结果为_16不等式组的最大整数解是_.17已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_18如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个
5、三角形,摆第n层图需要_个三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) (1)如图,四边形为正方形,那么与相等吗?为什么?(2)如图,在中,为边的中点,于点,交于,求的值(3)如图,中,为边的中点,于点,交于,若,求.20(6分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶由定义知,取AB中点N,连结MN,MN与AB的关系是_抛物线y对应的准蝶形必经过B(m,m),
6、则m_,对应的碟宽AB是_抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由21(6分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过90
7、0元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润22(8分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比
8、赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率23(8分)如图,点在的直径的延长线上,点在上,且AC=CD,ACD=120.求证:是的切线;若的半径为2,求图中阴影部分的面积.24(10分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?2
9、5(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?26(12分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中,可知,求得_如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M求证:若,求的度数 27(12分)如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长
10、交BD于点F,直线CF交AB的延长线于G(1)求证:AEFD=AFEC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形2、C【解析】如图,根据长方形的性质得出EFGH,推出FCD=2,代入FCD=1+A求出即可【
11、详解】EFGH,FCD=2,FCD=1+A,1=40,A=90,2=FCD=130,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键3、B【解析】连接BD,利用直径得出ABD=65,进而利用圆周角定理解答即可【详解】连接BD,AB是直径,BAD=25,ABD=90-25=65,AGD=ABD=65,故选B【点睛】此题考查圆周角定理,关键是利用直径得出ABD=654、D【解析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案【详解】解:55+55+55+55+55=25n,555=52n,则56=52n,解得:n=1故选D【点睛】此题主要考查了幂的乘
12、方运算,正确将原式变形是解题关键5、B【解析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案【详解】解:故选B6、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h7、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可【详解】由旋转可知AD=BD,ACB=90,AC=2,CD=BD,CB=CD,BCD是等边三角
13、形,BCD=CBD=60,BC=AC=2,阴影部分的面积=222=2.故答案选:B.【点睛】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.8、A【解析】根据正比例函数的增减性解答即可.【详解】正比例函数y=k2x(k0),k20,该函数的图象中y随x的增大而减小,点M(3,y1),N(4,y2)在正比例函数y=k2x(k0)图象上,43,y2y1,故选:A【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k0),当k0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k0时, y=kx的图象经过二、四象限,y随x的增
14、大而减小.9、B【解析】根据有理数的加法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法10、C【解析】科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,是负数【详解】42.4亿=4240000000,用科学记数法表示为:4.241故选C【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.11、C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29101故选C考点:科学记数法表示较小的数12、C【解析】如图,过
15、点A作AMDC于点M,过点B作BNDC于点N则AM=BN通过解直角ACM和BCN分别求得CM、CN的长度,则易得AB =MN=CMCN,即可得到结论【详解】如图,过点A作AMDC于点M,过点B作BNDC于点N则AB=MN,AM=BN在直角ACM中,ACM=45,AM=50m,CM=AM=50m在直角BCN中,BCN=ACB+ACD=60,BN=50m,CN=(m),MN=CMCN=50(m)则AB=MN=(50)m故选C【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题二、填空题:(本大题共6个小题,每小题4分,共24分)13、
16、【解析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可【详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为,故答案为【点睛】本题考查了树状图法的知识,解题的关键是列出树状图求出概率14、5【解析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为:5【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积扇形OCD的面积是解题的关键15、【解析】根据同分母分式加减运算法则
17、化简即可【详解】原式,故答案为【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键16、【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】解:,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1故答案为:1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了17、2或2【解析】本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据
18、证明,可得,即可得到的长.【详解】解: 当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,在中,由勾股定理,得:,在和中,,,当点在线段上时,如图4所示.过作于是正方形的对角线,在中,由勾股定理,得:在和中,,,故答案为或【点睛】本题主要考查了勾股定理和三角形全等的证明.18、n2n+1【解析】观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;可得,每一层比上一层多的个数依次为2,4,6,据此作答【详解】观察可得,第1层三角形的个数为1,第2层三角形的个数为222+1=3,第3层三角形的个数为323+1=7,第四层
19、图需要424+1=13个三角形摆第五层图需要525+1=21.那么摆第n层图需要n2n+1个三角形。故答案为:n2n+1.【点睛】本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)相等,理由见解析;(2)2;(3).【解析】(1)先判断出AB=AD,再利用同角的余角相等,判断出ABF=DAE,进而得出ABFDAE,即可得出结论;(2)构造出正方形,同(1)的方法得出ABDCBG,进而得出CG=AB,再判断出AFBCFG,即可得出结论;(3)先构造出矩形,同(1)的方法得,BAD=CBP,
20、进而判断出ABDBCP,即可求出CP,再同(2)的方法判断出CFPAFB,建立方程即可得出结论【详解】解:(1)BF=AE,理由:四边形ABCD是正方形,AB=AD,BAD=D=90,BAE+DAE=90,AEBF,BAE+ABF=90,ABF=DAE,在ABF和DAE中, ABFDAE,BF=AE, (2) 如图2, 过点A作AMBC,过点C作CMAB,两线相交于M,延长BF交CM于G,四边形ABCM是平行四边形,ABC=90,ABCM是矩形,AB=BC,矩形ABCM是正方形,AB=BC=CM,同(1)的方法得,ABDBCG,CG=BD,点D是BC中点,BD=BC=CM,CG=CM=AB,A
21、BCM,AFBCFG, (3) 如图3,在RtABC中,AB=3,BC=4,AC=5,点D是BC中点,BD=BC=2,过点A作ANBC,过点C作CNAB,两线相交于N,延长BF交CN于P,四边形ABCN是平行四边形,ABC=90,ABCN是矩形,同(1)的方法得,BAD=CBP,ABD=BCP=90,ABDBCP,CP= 同(2)的方法,CFPAFB,CF=.【点睛】本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键20、(1)MN与AB的关系是:MNAB,MNAB,(2)2
22、,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或
23、m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键21、(1)y是x的一次函数,y=30x+1(2)w=30x2
24、780x31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同(2)销售利润=每个许愿瓶的利润销售量(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润【详解】解:(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),解得y=30x1当x=14时,y=180;当x=16时,y=120,点(14,180),(16,120)均在函数y=30x+1图象上y与x之间的函数关系式为y=30x+
25、1(2)w=(x6)(30x1)=30x2780x31,w与x之间的函数关系式为w=30x2780x31(3)由题意得:6(30x+1)900,解得x3w=30x2780x31图象对称轴为:a=300,抛物线开口向下,当x3时,w随x增大而减小当x=3时,w最大=4以3元/个的价格销售这批许愿瓶可获得最大利润4元22、(1)60;90;统计图详见解析;(2)300;(3)【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)
26、列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率试题解析:(1)根据题意得:3050%=60(名),“了解”人数为60(15+30+10)=5(名),“基本了解”占的百分比为100%=25%,占的角度为25%360=90,补全条形统计图如图所示:(2)根据题意得:900=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪 石 布剪 (剪,剪) (石,剪) (布,剪)石 (剪,石) (石,石) (布,石)布 (剪,布) (石,布) (布,布)所有等可能的情况有9种,其中两人打平的情况有3
27、种,则P=考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法23、(1)见解析(2)图中阴影部分的面积为.【解析】(1)连接OC只需证明OCD90根据等腰三角形的性质即可证明;(2)先根据直角三角形中30的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积【详解】(1)证明:连接OCACCD,ACD120,AD30OAOC,2A30OCDACD290,即OCCD,CD是O的切线;(2)解:12A60S扇形BOC在RtOCD中,D30,OD2OC4,CDSRtOCDOCCD2图中阴影部分的面积为:24、(1)m8
28、,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大25、A、B两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然
29、后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:解得:答:A、B两种型号的空调购买价分别为2120元、2320元26、阅读发现:90;(1)证明见解析;(2)100【解析】阅读发现:只要证明,即可证明拓展应用:欲证明,只要证明即可根据即可计算【详解】解:如图中,四边形ABCD是正方形,故答案为为等边三角形,为等边三角形,四边形ABCD为矩形,在和中,;,【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确
30、寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型27、(1)详见解析;(2)详见解析;(3)2.【解析】(1)由BD是O的切线得出DBA=90,推出CHBD,证AECAFD,得出比例式即可(2)证AECAFD,AHEABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可(3)求出EF=FC,求出G=FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出FCB=CAB推出CG是O切线,由切割线定理(或AGCCGB)得出(2+FG)2=BGAG=2BG2,在RtBFG中,由勾股定理得出BG2=FG2BF2,推出FG24FG12=0,求出FG即可,从而由勾股定理求得AB=BG的长,从而得到O的半径r