2023届辽宁省盘锦市第一中学中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:87839269 上传时间:2023-04-18 格式:DOC 页数:22 大小:1.08MB
返回 下载 相关 举报
2023届辽宁省盘锦市第一中学中考数学四模试卷含解析.doc_第1页
第1页 / 共22页
2023届辽宁省盘锦市第一中学中考数学四模试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2023届辽宁省盘锦市第一中学中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省盘锦市第一中学中考数学四模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,直角三角形ABC中,C=90,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )A2B+C+2D222下列关于统计与概率的知识说法正确的是()A武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B检测100只灯泡的质量情况适宜采用抽样调查C了解北京市人均月收入的大致情况,适宜采用全面普查D甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数3如图所示的正方体的展开图是()ABCD4下列计算正确的是

3、()A3B329C(3)2D3+|3|65某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.86如图,在ABC中,EFBC,AB=3AE,若S四边形BCFE=16,则SABC=()A16B18C20D247已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )A1或5B或3C或1D或58如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,

4、AD=9,则五边形ABMND的周长为()A28B26C25D229如图,立体图形的俯视图是ABCD10若=1,则符合条件的m有()A1个B2个C3个D4个11计算(2017)0()1+tan30的结果是()A5B2C2D112扇形的半径为30cm,圆心角为120,用它做成一个圆锥的侧面,则圆锥底面半径为( )A10cmB20cmC10cmD20cm二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在平面直角坐标系中,的顶点、在坐标轴上,点的坐标是(2,2)将ABC沿轴向左平移得到A1B1C1,点落在函数y=-如果此时四边形的面积等于,那么点的坐标是_14一元二次方程x2+mx+3

5、=0的一个根为- 1,则另一个根为 15如图,中,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_16如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k0,x0)的图象过点B,E若AB=2,则k的值为_ 17抛物线yx2+bx+c的部分图象如图所示,则关于x的一元二次方程x2+bx+c0的解为_18在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y(x0)与此正方形的边有交点,则a的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出

6、文字说明、证明过程或演算步骤19(6分)反比例函数y=(k0)与一次函数y=mx+b(m0)交于点A(1,2k1)求反比例函数的解析式;若一次函数与x轴交于点B,且AOB的面积为3,求一次函数的解析式20(6分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为

7、 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)21(6分)已知ABC内接于O,AD平分BAC(1)如图1,求证:;(2)如图2,当BC为直径时,作BEAD于点E,CFAD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交O于点G,连接OE,若EF=2EG,AC=2,求OE的长22(8分)解不等式组并在数轴上表示解集23(8分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值24(10分)为了解某校落实新课改精神的情况,现以该校九年级二班的

8、同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.25(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接求证:四边形是菱形若,求四边形的面积26(12分

9、)分式化简:(a-) 27(12分)如图,已知ABC内接于O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F连接OC(1)若G=48,求ACB的度数;(1)若AB=AE,求证:BAD=COF;(3)在(1)的条件下,连接OB,设AOB的面积为S1,ACF的面积为S1若tanCAF=,求的值 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -SABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CDC=90,AC=2

10、,AB=4,BC=2阴影部分的面积= S半圆ACD +S半圆BCD -SABC= =.故选:D点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -SABC是解答本题的关键.2、B【解析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况

11、适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件方差越小波动越小3、A【解析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形

12、,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.4、C【解析】分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可【详解】=3,故选项A不合题意;329,故选项B不合题意;(3)2,故选项C符合题意;3+|3|3+30,故选项D不合题意故选C【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键5、C【解析】试题解析:这

13、组数据中4出现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C6、B【解析】【分析】由EFBC,可证明AEFABC,利用相似三角形的性质即可求出SABC的值【详解】EFBC,AEFABC,AB=3AE,AE:AB=1:3,SAEF:SABC=1:9,设SAEF=x,S四边形BCFE=16,解得:x=2,SABC=18,故选B【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.7、D【解析】由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根

14、据时,函数的最小值为4可分如下三种情况:若,时,y取得最小值4;若-1h3时,当x=h时,y取得最小值为0,不是4;若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可【详解】解:当xh时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,若,当时,y取得最小值4,可得:4,解得或(舍去);若-1h3时,当x=h时,y取得最小值为0,不是4,此种情况不符合题意,舍去;若-1x3h,当x=3时,y取得最小值4,可得:,解得:h=5或h=1(舍)综上所述,h的值为-3或5,故选:D【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键8、A【

15、解析】如图,运用矩形的性质首先证明CN=3,C=90;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答9、C【解析】试题分析:立体图形的俯视图是C故选C考点:简

16、单组合体的三视图10、C【解析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1 m2-9=0或m-2= 1 即m= 3或m=3,m=1 m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.11、A【解析】试题分析:原式=1(3)+=1+3+1=5,故选A12、A【解析】试题解析:扇形的弧长为:=20cm,圆锥底面半径为202=10cm,故选A考点:圆锥的计算二、填空题:(本大题共6个小题,每小题4分,共24分)13、 (-5, )【解析】分析:依

17、据点B的坐标是(2,2),BB2AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(5,)详解:如图,点B的坐标是(2,2),BB2AA2,点B2的纵坐标为2又点B2落在函数y=的图象上,当y=2时,x=3,BB2=AA2=5=CC2又四边形AA2C2C的面积等于,AA2OC=,OC=,点C2的坐标是(5,) 故答案为(5,) 点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质在平面直角坐标系内,把一个图形各个点的横坐标都加上

18、(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度14、-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解【详解】一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1x1=1,解得x1=-1故答案为-1.15、【解析】首先证明CAA是等边三角形,再证明ADC是直角三角形,在RtADC中利用含30度的直角三角形三边的关系求出CD、AD即可解决问题【详解】在RtACB中,ACB=90,B=30,A=60,ABC绕点C逆时针旋转至ABC,使得点A恰好落在AB上,CA=CA=2,CAB=A=60,CAA为等边三角形,AC

19、A=60,BCA=ACB -ACA=90-60=30,ADC=180-CAB-BCA=90,在RtADC中,ACD=30,AD=CA=1,CD=AD=,故答案为:【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键16、【解析】解:设E(x,x),B(2,x+2),反比例函数 (k0,x0)的图象过点B. E.x2=2(x+2), ,(舍去), ,故答案为17、x11,x21【解析】直接观察图象,抛物线与x轴交于1,对称轴是x1,所以根据抛

20、物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程x2+bx+c0的解【详解】解:观察图象可知,抛物线yx2+bx+c与x轴的一个交点为(1,0),对称轴为x1,抛物线与x轴的另一交点坐标为(1,0),一元二次方程x2+bx+c0的解为x11,x21故本题答案为:x11,x21【点睛】本题考查了二次函数与一元二次方程的关系一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值18、 【解析】因为A点的坐标为(a,a),则C(a1,a1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:A点的坐标为(a,a

21、),C(a1,a1),当C在双曲线y=时,则a1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,a的取值范围是a+1故答案为a+1【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=;(2)y=或y=【解析】试题分析:(1)把A(1,2k-1)代入y=即可求得结果;(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果试题解析:(1)把A(1,2k1)代入y=得,2k1=k,k=1

22、,反比例函数的解析式为:y=;(2)由(1)得k=1,A(1,1),设B(a,0),SAOB=|a|1=3,a=6,B(6,0)或(6,0),把A(1,1),B(6,0)代入y=mx+b得: , ,一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,一次函数的解析式为:y=所以符合条件的一次函数解析式为:y=或y=x+20、(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根

23、据加权平均数的定义计算可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为36040%144,故答案为144;(3)A同学得票数为30035%105,B同学得票数为30040%120,C同学得票数为30025%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、(1)证明见解析;(1)证明见解析;(3)

24、1.【解析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得BOD=1BAD,COD=1CAD,又AD平分BAC,得BOD=COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OMAD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为O直径,则G=CFE=FEG=90,四边形CFEG是矩形,得EG=CF,又AD平分BAC,再根据邻补角与余角的性质可得BAF=ABE,ACF=CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出HBOABC,根据相似三角形的性质得出对应

25、边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,BAD和BOD是所对的圆周角和圆心角,CAD和COD是所对的圆周角和圆心角,BOD=1BAD,COD=1CAD,AD平分BAC,BAD=CAD,BOD=COD,=;(1)如图1,过点O作OMAD于点M,OMA=90,AM=DM,BEAD于点E,CFAD于点F,CFM=90,MEB=90,OMA=MEB,CFM=OMA,OMBE,OMCF,BEOMCF,OB=OC,=1,FM=EM,AMFM=DMEM,DE=AF;(3)延长EO交AB于点H,连接CG,连接OABC为O直径,BAC=90,G=90,G=CFE=FEG=90,四边形

26、CFEG是矩形,EG=CF,AD平分BAC,BAF=CAF=90=45,ABE=180BAFAEB=45,ACF=180CAFAFC=45,BAF=ABE,ACF=CAF,AE=BE,AF=CF,在RtACF中,AFC=90,sinCAF=,即sin45=,CF=1=,EG=,EF=1EG=1,AE=3,在RtAEB中,AEB=90,AB=6,AE=BE,OA=OB,EH垂直平分AB,BH=EH=3,OHB=BAC,ABC=ABCHBOABC,OH=1,OE=EHOH=31=1【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点

27、.22、x0,不等式组的解集表示在数轴上见解析.【解析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解不等式2x+10,得:x,解不等式,得:x0,则不等式组的解集为x0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”23、【解析】由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=(2m1),AOBO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值【详解】解:,的

28、长分别是关于的方程的两根,设方程的两根为和,可令,四边形是菱形,在中:由勾股定理得:,则,由根与系数的关系得:,整理得:,解得:,又,解得,【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法24、(1)7、30%;(2)补图见解析;(3)105人;(3)【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:解:(1)本

29、次调查的总人数为1025%=40(人),参加音乐类活动的学生人数为4017.5%=7人,参加球类活动的人数的百分比为100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小25、(1)见解析;(2)S四边形ADOE =.【解析】(1) 根据矩形

30、的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到ODAE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有EAB=BAO.根据矩形的性质有ABCD,根据平行线的性质有BAC=ACD,求出DCA=60,求出AD=.根据面积公式SADC,即可求解.【详解】(1)证明:矩形ABCD,OA=OB=OC=OD.平行四边形ADOE,ODAE,AE=OD. AE=OB. 四边形AOBE为平行四边形. OA=OB,四边形AOBE为菱形. (2)解:菱形AOBE,EAB=BAO. 矩形ABCD,AB

31、CD. BAC=ACD,ADC=90. EAB=BAO=DCA. EAO+DCO=180,DCA=60. DC=2,AD=. SADC=. S四边形ADOE =.【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.26、a-b【解析】利用分式的基本性质化简即可.【详解】.【点睛】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.27、(1)48(1)证明见解析(3) 【解析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(1)先根据等腰三角形的性质得:ABE=AEB,再证明BCG=DAC,可得 ,则所对的圆周角相等,根据同弧所对的

32、圆周角和圆心角的关系可得结论;(3)过O作OGAB于G,证明COFOAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论【详解】(1)连接CD,AD是O的直径,ACD=90,ACB+BCD=90,ADCG,AFG=G+BAD=90,BAD=BCD,ACB=G=48;(1)AB=AE,ABE=AEB,ABC=G+BCG,AEB=ACB+DAC,由(1)得:G=ACB,BCG=DAC,AD是O的直径,ADPC,BAD=1DAC,COF=1DAC,BAD=COF;(3)过O作OGAB于G,设CF=x,tanCAF= ,AF=1x,OC=OA,由(1)得:COF=OAG,OFC=AGO=90,COFOAG,OG=CF=x,AG=OF,设OF=a,则OA=OC=1xa,RtCOF中,CO1=CF1+OF1,(1xa)1=x1+a1,a=x,OF=AG=x,OA=OB,OGAB,AB=1AG=x,【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出ACB+BCD=90;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁