《2023届河北省秦皇岛抚宁区台营区市级名校中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河北省秦皇岛抚宁区台营区市级名校中考数学全真模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,数轴上的四个点A,B,C,D对应的数为整数,且ABBCCD1,若|a|+|b|2,则原点的位置可能是()AA或BBB或CCC或DDD或A2现有三张背面完全相同的卡片,正面分
2、别标有数字1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()ABCD3如图,在O中,O为圆心,点A,B,C在圆上,若OA=AB,则ACB=()A15B30C45D604如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40,则图中1的度数为( )A115B120C130D1405如图O的直径垂直于弦,垂足是,的长为( )AB4CD86下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD7如图,在四边形ABCD中,A+D=,ABC的平分线与BCD的平分线交于点P,则P=() A90-B90+ CD36
3、0-8将一次函数的图象向下平移2个单位后,当时,的取值范围是( )ABCD9对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D10若,则的值为( )A12B2C3D0二、填空题(本大题共6个小题,每小题3分,共18分)11圆锥的底面半径为4cm,高为5cm,则它的表面积为_ cm112如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若BD=2CE,则DE的长为_.13如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第
4、三个正方形,则第2018个正方形的面积为_14如图,在平面直角坐标系中,已知点A(4,0)、B(0,3),对AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、,则第(5)个三角形的直角顶点的坐标是_,第(2018)个三角形的直角顶点的坐标是_15比较大小: (填“”,“ACP,所以在线段AB上不存在“好点”; (2)P为BA延长线上一个“好点”;ACP=MBP;PACPMB;即;M为PC中点,MP=2;. (3)第一种情况,P为线段AB上的“好点”,则ACP=MBA,找AP中点D,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPD
5、BM;DM2=DPDB即4= DP(5DP);解得DP=1,DP=4(不在AB边上,舍去;)AP=2 第二种情况(1),P为线段AB延长线上的“好点”,则ACP=MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPDBMDM2=DPDB即4= DP(5DA)= DP(5DP);解得DP=1(不在AB延长线上,舍去),DP=4AP=8;第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD; 此时,MBAMDBDMP=ACP,则这种情况不存在,舍去; 第三
6、种情况,P为线段BA延长线上的“好点”,则ACP=MBA, PACPMB; BM垂直平分PC则BC=BP= ;综上所述,或或;【点睛】本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.21、(1)y=-y=x-1(1)x2【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1), 点A(5,2),点B(2,3), 又点C在y轴负半轴,点D在第二象限,点C的坐标为(2,-1),点D的坐标为(-1,3)点在反比例函数y=的图象上, 反比例函数的表达式为
7、 将A(5,2)、B(2,-1)代入y=kx+b,解得: 一次函数的表达式为(1)将代入,整理得: 一次函数图象与反比例函数图象无交点观察图形,可知:当x2时,反比例函数图象在一次函数图象上方,不等式kx+b的解集为x2点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点22、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)连接OE,AE,由AB是O的直径,得到AEB=AEC=90,根据四边形ABCD是平行四边形,得到PA=PC推出OEP=OAC=90,根据切线的判定定理
8、即可得到结论;(2)由AB是O的直径,得到AQB=90根据相似三角形的性质得到=PBPQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论试题解析:(1)连接OE,AE,AB是O的直径,AEB=AEC=90,四边形ABCD是平行四边形,PA=PC,PA=PC=PE,PAE=PEA,OA=OE,OAE=OEA,OEP=OAC=90,EF是O的切线;(2)AB是O的直径,AQB=90,APQBPA,=PBPQ,在AFP与CEP中,PAF=PCE,APF=CPE,PA=PC,AFPCEP,PF=PE,PA=PE=EF,=4BPQP考点:切线的判定;平行四边形的性质;相似
9、三角形的判定与性质23、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人【解析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人数课外阅读时间满足的百分比即得所求【详解】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇形的圆心角为:,补
10、全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比24、(1)文具袋的单价为15元,圆规单价为3元;(2)方案一总费用为元,方案二总费用为元;方案一更合算.【解析】(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论【详解】(1)设文具袋的单价为x元,圆规单价为y元。由题意得解得答:文具袋的单价为15元,圆规单价为3元。(2)设圆规m个,则方案一总费用为:元方案二总费用元故答案为:元;买圆规100个时,方案一总费用:元,方案二总费用:元,方案一更合算。【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键