《2023届甘肃省兰州市五十五中中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届甘肃省兰州市五十五中中考考前最后一卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若关于x的分式方程的解为非负数,则a的取值范围是()Aa1Ba1Ca1且a4Da1且a42如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最
2、小值为A6B8C10D1232018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人其中数据280万用科学计数法表示为( )A2.8105B2.8106C28105D0.281074要使分式有意义,则x的取值应满足( )Ax=2Bx2Cx2Dx252017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A0.3161010B0.3161011C3.161010D3.1610116如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD7如图,直线 AB 与 MNP
3、Q 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )A4 对 B5 对 C6 对 D7 对85的倒数是AB5CD59桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是()ABCD10在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上,已知正方形A1B1C1D1的边长为l,B1C1O=60,B1C1B2C2B3C3,则正方形A2017B2017C2017 D2017的边长是()A()2016 B()20
4、17 C()2016 D()201711如图,已知点E在正方形ABCD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D8012数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A点AB点BC点CD点D二、填空题:(本大题共6个小题,每小题4分,共24分)13函数中自变量的取值范围是_14分式方程+=1的解为_.15已知关于x的方程有两个不相等的实数根,则m的最大整数值是 16分解因式:3x327x_17如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC交AB于点P,已知OAB=22,则OCB=_18关于x的一元二次方程(k-1)x2+6x+k2
5、-k=0的一个根是0,则k的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABC和ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EFCD与BE相等?若相等,请证明;若不相等,请说明理由;若BAC=90,求证:BF1+CD1=FD120(6分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2
6、000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.21(6分)如图,已知反比例函数y=(x0)的图象与一次函数y=x+4的图象交于A和B(6,n)两点求k和n的值;若点C(x,y)也在反比例函数y=(x0)的图象上,求当2x6时,函数值y的取值范围22(8分)先化简,再求值:,其中x满足x2x1=123(8分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的
7、内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)24(10分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s)(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距
8、离等于2,求所有这样的m的取值范围25(10分)声音在空气中传播的速度y(m/s)是气温x()的一次函数,下表列出了一组不同气温的音速:气温x()05101520音速y(m/s)331334337340343(1)求y与x之间的函数关系式:(2)气温x=23时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?26(12分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同
9、时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标27(12分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D(1)求a,b的值及反比例函数的解析式;(2)若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由参考答案一、选择题(本大题共12个
10、小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可解:去分母得:2(2xa)=x2,解得:x=,由题意得:1且2,解得:a1且a4,故选C点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为12、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论【详解】连
11、接AD,ABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=16,解得AD=8,EF是线段AC的垂直平分线,点C关于直线EF的对称点为点A,AD的长为CM+MD的最小值,CDM的周长最短=(CM+MD)+CD=AD+BC=8+4=8+2=1故选C【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键3、B【解析】分析:科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,是负数详解:280万这个数用科学记数法可以表示为 故选B
12、. 点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.4、D【解析】试题分析:分式有意义,x+10,x1,即x的取值应满足:x1故选D考点:分式有意义的条件5、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】316000000003.161故选:C【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示.6、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两
13、旁的部分能够互相重合,那么这个图形叫做轴对称图形7、C【解析】由题意,AQNP,MNBQ,ACMDCN,CDNBDP,BPDBQA,ACMABQ,DCNABQ,ACMDBP,所以图中共有六对相似三角形故选C8、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C9、B【解析】试题解析:由图可知可以瞄准的点有2个B球一次反弹后击中A球的概率是.故选B10、C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案解:如图所示:正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3D1E1=B2E2,D2E3=B
14、3E4,D1C1E1=C2B2E2=C3B3E4=30,D1E1=C1D1sin30=,则B2C2=()1,同理可得:B3C3=()2,故正方形AnBnCnDn的边长是:()n1则正方形A2017B2017C2017D2017的边长是:()2故选C“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键11、C【解析】试题解析:AEB=90,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.12、A【解析】根据绝对值的含义和求法,判断出绝对值等于2的数是2和2,据此判断出绝对值等于2的点
15、是哪个点即可【详解】解:绝对值等于2的数是2和2,绝对值等于2的点是点A故选A【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数有理数的绝对值都是非负数二、填空题:(本大题共6个小题,每小题4分,共24分)13、x2且x1【解析】解:根据题意得:且x10,解得:且 故答案为且14、【解析】根据解分式方程的步骤,即可解答【详解】方程两边都乘以,得:,解得:,检验:当时,所以分式方程的解为,故答案为【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方
16、程转化为整式方程求解解分式方程一定注意要验根15、1【解析】试题分析:关于x的方程有两个不相等的实数根,.m的最大整数值为1考点:1.一元二次方程根的判别式;2.解一元一次不等式16、3x(x+3)(x3)【解析】首先提取公因式3x,再进一步运用平方差公式进行因式分解【详解】3x327x3x(x29)3x(x+3)(x3)【点睛】本题考查用提公因式法和公式法进行因式分解的能力一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止17、44【解析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角
17、形的性质解答即可【详解】连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,OAB=22,OAB=OBA=22,APO=CBP=68,APO=CPB,CPB=ABP=68,OCB=180-68-68=44,故答案为44【点睛】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用18、2【解析】试题解析:由于关于x的一元二次方程的一个根是2,把x=2代入方程,得 ,解得,k2=2,k2=2当k=2时,由于二次项系数k2=2,方程不是关于x的二次方程,故k2所以k的值是2故答案为2三、解答题:(本大题共9个小题,
18、共78分,解答应写出文字说明、证明过程或演算步骤19、(1)CD=BE,理由见解析;(1)证明见解析.【解析】(1)由两个三角形为等腰三角形可得ABAC,AEAD,由BACEAD可得EABCAD,根据“SAS”可证得EABCAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出EBF90,在RtEBF中由勾股定理得出BF1BE1EF1,然后证得EFFD,BECD,等量代换即可得出结论【详解】解:(1)CDBE,理由如下:ABC和ADE为等腰三角形,ABAC,ADAE,EADBAC,EADBADBACBAD,即EABCAD,在EAB与CAD中,EABCAD,BECD;(1)BAC9
19、0,ABC和ADE都是等腰直角三角形,ABFC45,EABCAD,EBAC,EBA45,EBF90,在RtBFE中,BF1BE1EF1,AF平分DE,AEAD,AF垂直平分DE,EFFD,由(1)可知,BECD,BF1CD1FD1【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键20、 (1)72,见解析;(2)7280;(3).【解析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率【详解】(1)扇形
20、统计图中玉兰所对的圆心角为360(1-40%-15%-25%)=72月季的株数为200090%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为800091%=7280(株). 故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键21、(1)n=1,k=1(2)当2x1时,1y2【
21、解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=10结合反比例函数的性质,即可求出:当2x1时,1y2【详解】(1)当x=1时,n=1+4=1,点B的坐标为(1,1)反比例函数y=过点B(1,1),k=11=1;(2)k=10,当x0时,y随x值增大而减小,当2x1时,1y2【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.22、2【解析】根据分式的运算法则进行计算化简,
22、再将x2=x+2代入即可.【详解】解:原式=,x2x2=2,x2=x+2,=223、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可【解析】易得M在AB的垂直平分线上,且到C的距离等于AB的一半24、 (1) 1;(1) m【解析】(1)在RtABP中利用勾股定理即可解决问题;(1)分两种情形求出AD的值即可解决问题:如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.【详解】解:(1):(1)如图1中,设PD=t则PA=5-tP、B、E共线,BPC=DPC,ADBC,DP
23、C=PCB,BPC=PCB,BP=BC=5,在RtABP中,AB1+AP1=PB1,31+(5-t)1=51,t=1或9(舍弃),t=1时,B、E、P共线 (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1作EQBC于Q,EMDC于M则EQ=1,CE=DC=3易证四边形EMCQ是矩形,CM=EQ=1,M=90,EM=,DAC=EDM,ADC=M,ADCDME,AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1作EQBC于Q,延长QE交AD于M则EQ=1,CE=DC=3在RtECQ中,QC=DM=,由DMECDA,AD=,综上所述,在动点P从点D到点
24、A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围m【点睛】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.25、 (1) y=x+331;(2)1724m.【解析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b, k=,y=x+331.(2)当x=23时,y= x23+331=344.85344.8=1724.此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一
25、次函数解析式的求法是解题的关键.26、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求
26、出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接M
27、N、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x
28、 BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEB
29、CO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周
30、角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性27、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例
31、函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键