2023届江西省萍乡市名校毕业升学考试模拟卷数学卷含解析.doc

上传人:lil****205 文档编号:87838960 上传时间:2023-04-18 格式:DOC 页数:17 大小:895KB
返回 下载 相关 举报
2023届江西省萍乡市名校毕业升学考试模拟卷数学卷含解析.doc_第1页
第1页 / 共17页
2023届江西省萍乡市名校毕业升学考试模拟卷数学卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2023届江西省萍乡市名校毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省萍乡市名校毕业升学考试模拟卷数学卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在ABC中,ACB=90, ABC=60, BD平分ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A3.5B3C4D4.52在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )AB

2、或CD或3在代数式 中,m的取值范围是()Am3Bm0Cm3Dm3且m04抛物线y=ax24ax+4a1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn5如图是抛物线y=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:abc0;2a+b=0;方程ax2+bx+c=4有两个相等的实数根;抛物线与x轴的另一个交点是(2.0);x(ax+b)a+b,其中正确结论的个数是()A4个B3个C2个D1个6如图,田亮同学用剪刀沿直线将一片平整的树叶

3、剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A垂线段最短B经过一点有无数条直线C两点之间,线段最短D经过两点,有且仅有一条直线7在3,1,0,1四个数中,比2小的数是()A3B1C0D18共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A平均数B中位数C众数D方差9下列说法中,错误的是()A两个全等三角形一

4、定是相似形 B两个等腰三角形一定相似C两个等边三角形一定相似 D两个等腰直角三角形一定相似10已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.23107二、填空题(本大题共6个小题,每小题3分,共18分)11如图RtABC中,C=90,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把BDP沿PD所在直线翻折后,点B落在点Q处,如果QDBC,那么点P和点B间的距离等于_12若分式的值为正数,则x的取值范围_13阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:

5、的内切圆小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D;点O为圆心,OD长为半径作所以,即为所求作的圆请回答:该尺规作图的依据是_14函数的定义域是_.15函数中,自变量x的取值范围是 16已知关于x,y的二元一次方程组 的解互为相反数,则k的值是_三、解答题(共8题,共72分)17(8分)计算:(2)3+(3)(4)2+2(3)2(2)18(8分)计算: + 2018019(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这

6、10天中,最低气温的众数是_,中位数是_,方差是_请用扇形图表示出这十天里温度的分布情况20(8分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的

7、值21(8分)如图,已知点C是AOB的边OB上的一点,求作P,使它经过O、C两点,且圆心在AOB的平分线上22(10分)在等边三角形ABC中,点P在ABC内,点Q在ABC外,且ABP=ACQ,BP=CQ求证:ABPCAQ;请判断APQ是什么形状的三角形?试说明你的结论23(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,O是PAD的外接圆 (1)求证:AB是O的切线; (2)若AC=8,tanBAC=,求O的半径24如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m经过讨论,同学们得出三种建立平面直角坐标系的方案(如图)

8、,你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:ACB90,ABC60,A10,BD平分ABC,ABDABC10,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B2、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点

9、睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k3、D【解析】根据二次根式有意义的条件即可求出答案【详解】由题意可知:解得:m3且m0故选D【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型4、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口

10、向上,距离对称轴越远的点,对应的函数值越大,5、B【解析】通过图象得到、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,抛物线的顶点坐标是,抛物线对称轴为直线,则错误,正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,正确;由抛物线对称性,抛物线与轴的另一个交点是,则错误;不等式可以化为,抛物线顶点为,当时,故正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不

11、等式.6、C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,线段AB的长小于点A绕点C到B的长度,能正确解释这一现象的数学知识是两点之间,线段最短,故选C【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单7、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,

12、正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.8、B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。9、

13、B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换特别注意,本题是选择错误的,一定要看清楚题10、B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用

14、的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定详解:0.000000823=8.2310-1故选B点睛:本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题(本大题共6个小题,每小题3分,共18分)11、2.1或2【解析】在RtACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在RtQEP中,根据勾股定理可求QP,继而可求得答案【详解】如图所示:在RtACB中,C=90,AC=6,BC=8,AB=2

15、,由折叠的性质可得QD=BD,QP=BP,又QDBC,DQAC,D是AB的中点,DE=AC=3,BD=AB=1,BE=BC=4,当点P在DE右侧时,QE=1-3=2,在RtQEP中,QP2=(4-BP)2+QE2,即QP2=(4-QP)2+22,解得QP=2.1,则BP=2.1当点P在DE左侧时,同知,BP=2故答案为:2.1或2【点睛】考查了折叠的性质、直角三角形的性质以及勾股定理此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系12、x1【解析】试题解析:由题意得:0,-60,1-x0,x113、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆

16、的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线【解析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质14、x-1【解析】分析:根据二次根式的性质,被开方数大于或等于

17、0,可以求出x的范围详解:根据题意得:x+10,解得:x1 故答案为x1点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑: (1)当函数表达式是整式时,定义域可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (1)当函数表达式是二次根式时,被开方数非负15、且.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.16、1【解析】关于x,y的二元一次方程组 的解互为相反数,x=-y,把代入得:-y+

18、2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入得2-3=k,即k=-1.故答案为-1三、解答题(共8题,共72分)17、-17.1【解析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的【详解】解:原式8+(3)189(2),8149(2),62+4.1,17.1【点睛】此题要注意正确掌握运算顺序以及符号的处理18、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.19、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解

19、析】(1)根据图1找出8、9、10的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11的天数在扇形统计图中所占的度数,然后作出扇形统计图即可【详解】(1)由图1可知,8有2天,9有0天,10有2天,补全统计图如图;(2)根据条形统计图,7出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7,第6个温度为8,所以,中位数为(7+8)=7.5;平均数为(62+73+82+102+11)=80=8,所以,方差

20、=2(68)2+3(78)2+2(88)2+2(108)2+(118)2,=(8+3+0+8+9),=28,=2.8;(3)6的度数,360=72,7的度数,360=108,8的度数,360=72,10的度数,360=72,11的度数,360=36,作出扇形统计图如图所示【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数给定一组数据,出现次数最多的那个数,称为这组数据的众数

21、20、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P

22、在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30,AP=8t,AGP=9

23、0,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要

24、考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.21、答案见解析【解析】首先作出AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可【详解】解:如图所示:【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键.22、 (1)证明见解析;(2) APQ是等边三角形【解析】(1)根据等边三角形的性质可得ABAC,再根据SAS证明ABPACQ;(2)根据全等三角形的性质得到APAQ ,再证PAQ 60,从而得出APQ是等边三角形

25、.【详解】证明:(1)ABC为等边三角形, AB=AC,BAC=60,在ABP和ACQ中, ABPACQ(SAS),(2)ABPACQ, BAP=CAQ,AP=AQ, BAP+CAP=60, PAQ=CAQ+CAP=60,APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,ABPACQ是解题的关键.23、 (1)见解析;(2)【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OPAD,AE=DE,则1+OPA=90,而OAP=OPA,所以1+OAP=90,再根据菱形的性质

26、得1=2,所以2+OAP=90,然后根据切线的判定定理得到直线AB与O相切; (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tanDAC=,得到DF=2,根据勾股定理得到AD=2,求得AE=,设O的半径为R,则OE=R,OA=R,根据勾股定理列方程即可得到结论详解:(1)连结OP、OA,OP交AD于E,如图, PA=PD,弧AP=弧DP,OPAD,AE=DE,1+OPA=90 OP=OA,OAP=OPA,1+OAP=90 四边形ABCD为菱形,1=2,2+OAP=90,OAAB,直线AB与O相切; (2)连结BD,交AC于点F,如图, 四边形ABCD为菱形,

27、DB与AC互相垂直平分 AC=8,tanBAC=,AF=4,tanDAC=,DF=2,AD=2,AE=在RtPAE中,tan1=,PE=设O的半径为R,则OE=R,OA=R在RtOAE中,OA2=OE2+AE2,R2=(R)2+()2,R=,即O的半径为 点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了菱形的性质和锐角三角函数以及勾股定理24、 (1) 方案1; B(5,0); ;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式(2)把x=3代入抛物线的解析式,即可得到结论试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入,解得:=3.2,水面上涨的高度为3.2m方案2:(1)点B的坐标为(10,0)设抛物线的解析式为:由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入解得:=3.2,水面上涨的高度为3.2m方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0)设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入解得:=,水面上涨的高度为3.2m

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁