《2023届浙江省诸暨市陶朱中学十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省诸暨市陶朱中学十校联考最后数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件其中甲种奖品每件40元,乙种奖品每件30元如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件设购买甲种奖品x件,乙种奖品y件依题意,可列方程
2、组为( )ABCD218的倒数是()A18B18C-D3一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 4如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得CAB25,延长AC至点M,则BCM的度数为( )A40B50C60D705一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系下列叙述错误的是()AAB两地相距1000千米B两车出发后3小时相遇
3、C动车的速度为D普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地6已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=反比例函数y=在第一象限图象经过点A,与BC交于点FSAOF=,则k=()A15B13C12D57在ABC中,C90,那么B的度数为( )A60B45C30D30或608如图,圆O是等边三角形内切圆,则BOC的度数是()A60B100C110D1209如图,ABC为等腰直角三角形,C=90,点P为ABC外一点,CP=,BP=3,AP的最大值是()A+3B4C5D310如果与互补,与互余,则与的关系是( )ABCD以上都不对二、填空题(共7
4、小题,每小题3分,满分21分)11一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_12如图,长方体的底面边长分别为1cm 和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_cm13在ABCD中,按以下步骤作图:以点B为圆心,以BA长为半径作弧,交BC于点E;分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;连接BF,延长线交AD于点G. 若AGB=30,则C=_.14函数y=的自变量x的取值范围是_15因式分解:_.16的相反数是_17学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打
5、组合,可组成不同的组合共有_对.三、解答题(共7小题,满分69分)18(10分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30,他又继续走下台阶到达C处,测得树的顶端的仰角是60,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45,已如A点离地面的高度AB4米,BCA30,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度19(5分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并
6、根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.20(8分)如图1,抛物线yax2+(a+2)x+2(a0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0m4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M(1)求抛物线的解析式;(2)若PN:PM1:4,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点
7、O逆时针旋转得到OP2,旋转角为(090),连接AP2、BP2,求AP2+的最小值21(10分)解方程:x24x5022(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校
8、最多可购买多少个乙种足球?23(12分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案24(14分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数
9、量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.2、C【解析】根据乘积为1的两个数互为倒数,可得一个数的倒数【详解】-18=1,18的倒数是,故选
10、C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键3、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.4、B【解析】解:由作法可知直线l是线段AB的垂直平分线,AC=BC,CAB=CBA=25,BCM=CAB+CBA=25+25=50故选B5、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V
11、1+ V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.6、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)四边形OACB是菱形,SAOF=,OBAM=,即aa=39,解得a=,而a0,a=,即A(,6),点A
12、在反比例函数y=的图象上,k=6=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=S菱形OBCA7、C【解析】根据特殊角的三角函数值可知A=60,再根据直角三角形中两锐角互余求出B的值即可.【详解】解:,A=60.C90,B=90-60=30.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.8、D【解析】由三角形内切定义可知OB、OC是ABC、ACB的角平分线,所以可得到关系式OBC+OCB=(ABC+ACB),把对应数值代入即可求得BOC的值【详解】解:ABC
13、是等边三角形,A=ABC=ACB=60,圆O是等边三角形内切圆,OB、OC是ABC、ACB的角平分线,OBC+OCB=(ABC+ACB)=(18060)=60,BOC=18060=120,故选D【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质关键是要知道关系式OBC+OCB=(ABC+ACB)9、C【解析】过点C作,且CQ=CP,连接AQ,PQ,证明根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ, 在和中 AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助
14、线是解题的关键.10、C【解析】根据1与2互补,2与1互余,先把1、1都用2来表示,再进行运算【详解】1+2=1801=180-2又2+1=901=90-21-1=90,即1=90+1故选C【点睛】此题主要记住互为余角的两个角的和为90,互为补角的两个角的和为180度二、填空题(共7小题,每小题3分,满分21分)11、1【解析】设这个正多边的外角为x,则内角为5x,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360外角度数可得边数【详解】设这个正多边的外角为x,由题意得:x+5x=180,解得:x=30,36030=1故答案为:1【点睛】此题主要考查了多边形的内角和外角,
15、关键是计算出外角的度数,进而得到边数12、1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果【详解】解:将长方体展开,连接A、B,AA=1+3+1+3=8(cm),AB=6cm,根据两点之间线段最短,AB=1cm故答案为1考点:平面展开-最短路径问题13、120【解析】首先证明ABG=GBE=AGB=30,可得ABC=60,再利用平行四边形的邻角互补即可解决问题.【详解】由题意得:GBA=GBE,ADBC,AGB=GBE=30,ABC=60,ABCD,C=180-ABC=120,故答案为:120.【点睛】本题考查基本作图、平行四边形的性质等知识,解题的
16、关键是熟练掌握基本知识14、x且x1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可详解:根据题意得2x+10,x-10,解得x-且x1故答案为x-且x1点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单15、3(x-2)(x+2)【解析】先提取公因式3,再根据平方差公式进行分解即可求得答案注意分解要彻底【详解】原式=3(x24)=3(x-2)(x+2)故答案为3(x-2)(x+2)【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底16、【解析】根据只有符号不同的两
17、个数叫做互为相反数解答【详解】的相反数是.故答案为.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.17、1【解析】利用树状图展示所有1种等可能的结果数【详解】解:画树状图为:共有1种等可能的结果数故答案为1【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率三、解答题(共7小题,满分69分)18、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60,AEC30,得到AE16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于
18、点P,先分别求出PB、CD得到PD,利用NDP45得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30,AC8,ECD60,ACE是直角三角形,AFBD,CAF30,CAE60,AEC30,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则AMBP6,由(1)知CDCEAC4,BC4,PDBP+BC+CD6+4+46+8,NDP45,且NPD90,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30角所对的直角边等于斜边的一半
19、,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.19、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.20、(1);(2)m3;(3)【解析】(1)本题需先根据图象过A点,代入即可
20、求出解析式;(2)由OABPAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的P2OBQOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)A(4,0)在抛物线上,016a+4(a+2)+2,解得a,抛物线的解析式为y;(2)令x0可得y2,OB2,OPm,AP4m,PMx轴,OABPAN,M在抛物线上,PM+2,PN:MN1:3,PN:PM1:4,解得m3或m4(舍去);(3)在y轴上取一点Q,使,如图,由(2)可知P
21、1(3,0),且OB2,且P2OBQOP2,P2OBQOP2,当Q(0,)时,QP2,AP2+BP2AP2+QP2AQ,当A、P2、Q三点在一条线上时,AP2+QP2有最小值,A(4,0),Q(0,),AQ,即AP2+BP2的最小值为【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.21、x1 =-1, x2 =5【解析】根据十字相乘法因式分解解方程即可22、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题
22、意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x50,经检验,x50是原方程的解,且符合题意,x+21答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)设可购买m个乙种足球,则购买(50m)个甲种足球,根据题意得:50(1+10%)(50m)+1(110%)m2910,解得:m2答:这所学校最多可购买2个乙种足球【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类
23、问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系23、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:购买篮球8个,排球12个;购买篮球9,排球11个;购买篮球2个,排球2个;方案最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得答:
24、篮球每个50元,排球每个30元(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)1解得:m2又m8,8m2篮球的个数必须为整数,只能取8、9、2满足题意的方案有三种:购买篮球8个,排球12个,费用为760元;购买篮球9,排球11个,费用为780元;购买篮球2个,排球2个,费用为1元以上三个方案中,方案最省钱点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键24、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在
25、A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100500.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50500.9-300)=3900元,单独在B超市购买:100500.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45500.9-300=1725元,两次购买,每次各买45个,需要17252=3450元,其余10个在B超市购买,需要10500.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.