《2023届福建省南平市邵武市四中学片区市级名校中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届福建省南平市邵武市四中学片区市级名校中考数学最后冲刺浓缩精华卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()Ay=(x+2)25 By=(x+2)2+5 Cy=(x2)25 Dy=(x2)2+52在平面直角坐标系中,点P(m3,2m)不可能在()A第一象限
2、B第二象限 C第三象限 D第四象限3下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()ABCD4某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A152元B156元C160元D190元5某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )A144(1x)2=100B100(1x)2=144C144(1+x)2=100D100(1+x)2=1446二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD7已知一
3、组数据,的平均数是2,方差是,那么另一组数据,的平均数和方差分别是ABCD8下列二次根式中,最简二次根式是( )ABCD9已知一次函数y=axxa+1(a为常数),则其函数图象一定过象限()A一、二B二、三C三、四D一、四10方程的解是A3B2C1D0二、填空题(本大题共6个小题,每小题3分,共18分)11将一张长方形纸片折叠成如图所示的形状,则ABC=_12已知b是a,c的比例中项,若a=4,c=16,则b=_13已知二次函数y=x2,当x0时,y随x的增大而_(填“增大”或“减小”)14已知m、n是一元二次方程x2+4x10的两实数根,则_15如图,四边形ABCD中,点P是对角线BD的中点
4、,点E,F分别是AB,CD的中点,AD=BC,PEF=35,则PFE的度数是_16如图,ADBECF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,DE=6,则EF= 三、解答题(共8题,共72分)17(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000
5、名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人18(8分)如图,已知函数(x0)的图象经过点A、B,点B的坐标为(2,2)过点A作ACx轴,垂足为C,过点B作BDy轴,垂足为D,AC与BD交于点F一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E若AC=OD,求a、b的值;若BCAE,求BC的长19(8分)先化简:(),再从2,1,0,1这四个数中选择一个合适的数代入求值20(8分)如图所示,直线y=2x+b与反比例函数y=交于点A、B,与x轴交于点C(1)若A(3,m)、B(1,n)直接写出不等式2x+b的解(2)求sinO
6、CB的值(3)若CBCA=5,求直线AB的解析式21(8分)在ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。22(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元
7、的无息贷款?23(12分)已知如图,在ABC中,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论24某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在1665岁之间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的
8、400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(2,1),所以,平移后的抛物线的解析式为y=(x+2)21故选:A【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键2、A【解析】分点P的横坐标是正数和负数两种情况讨论求解【详解】m-30
9、,即m3时,2-m0,所以,点P(m-3,2-m)在第四象限;m-30,即m3时,2-m有可能大于0,也有可能小于0,点P(m-3,2-m)可以在第二或三象限,综上所述,点P不可能在第一象限故选A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)3、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可详解:A是轴对称图形,不是中心对称图形; B是轴对称图形,也是中心对称图形; C是轴对称图形,不是中心对称图形; D是轴对称图形,不是中心对称图形 故选
10、B点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合4、C【解析】【分析】设进价为x元,依题意得2400.8-x=20x,解方程可得.【详解】设进价为x元,依题意得2400.8-x=20x解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.5、D【解析】试题分析:2013年的产量=2011年的产量(1+年平均增长率)2,把相关数值代入即可解:2012年的产量为100(1+x),2013年的
11、产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键6、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.7、D【解析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可【详解】解:数据x1,x2,x3,x4,x5的平均数是2,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是32-2=4;数据x1,x2,x3,x4,x
12、5的方差为,数据3x1,3x2,3x3,3x4,3x5的方差是32=3,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.8、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被
13、开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式9、D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:y=axxa+1(a为常数),y=(a-1)x-(a-1)当a-10时,即a1,此时函数的图像过一三四象限;当a-10时,即a1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.
14、一次函数y=kx+b(k0,k、b为常数)的图像与性质:当k0,b0时,图像过一二三象限,y随x增大而增大;当k0,b0时,图像过一三四象限,y随x增大而增大;当k0,b0时,图像过一二四象限,y随x增大而减小;当k0,b0,图像过二三四象限,y随x增大而减小.10、A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x3,解得:x=3,经检验x=3是分式方程的解故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、73【解析】试题解析:CBD=34,CBE=180-CBD=146,ABC=ABE=CBE=731
15、2、8【解析】根据比例中项的定义即可求解.【详解】b是a,c的比例中项,若a=4,c=16,b2=ac=416=64,b=8,故答案为8【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即ab=bc或,那么线段b叫做线段a、c的比例中项.13、增大【解析】根据二次函数的增减性可求得答案【详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.14、1【解析】先由根与系数的关系求出mn及m+n的值,再把化为 的形式代入进行计算即可【详解】m、n是一元二次方程x
16、2+1x10的两实数根,m+n1,mn1, 1故答案为1【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x2 15、35【解析】四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,PE是ABD的中位线,PF是BDC的中位线,PE=AD,PF=BC,又AD=BC,PE=PF,PFE=PEF=35.故答案为35.16、1【解析】试题分析:ADBECF,即,EF=1故答案为1考点:平行线分线段成比例三、解答题(共8题,共72分)17、(1)图形见解析;(2
17、)1;(3)1.【解析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得【详解】解:(1)被调查的总人数为2020%100(人),则辅导1个学科(B类别)的人数为100(20+30+10+5)35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000 1(人),故答案为1【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样
18、本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键18、(1)a=,b=2;(2)BC=【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tanADF=,tanAEC=,进而求出m的值,即可得出答案试题解析:(1)点B(2,2)在函数y=(x0)的图象上,k=4,则y=,BDy轴,D点的坐标为:(0,2),OD=2,ACx轴,AC=OD,AC=3,即A点的纵坐标为:3,点A在y=的图象上,A点的坐标为:(,3),一次函数y=ax+b的图象经过点A、D,解得:,
19、b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),BDCE,且BCDE,四边形BCED为平行四边形,CE=BD=2,BDCE,ADF=AEC,在RtAFD中,tanADF=,在RtACE中,tanAEC=,=,解得:m=1,C点的坐标为:(1,0),则BC=考点:反比例函数与一次函数的交点问题.19、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键20、(1) x3或0x1;(2
20、);(3)y=2x2【解析】(1)不等式的解即为函数y=2x+b的图象在函数y=上方的x的取值范围可由图象直接得到(2)用b表示出OC和OF的长度,求出CF的长,进而求出sinOCB(3)求直线AB的解析式关键是求出b的值【详解】解:(1)如图:由图象得:不等式2x+b的解是x3或0x1;(2)设直线AB和y轴的交点为F当y=0时,x=,即OC=;当x=0时,y=b,即OF=b,CF=,sinOCB=sinOCF=(3)过A作ADx轴,过B作BEx轴,则AC=AD=,BC=,ACBC=(yA+yB)=(xA+xB)=5,又2x+b=,所以2x2+bxk=0,b=5,b=,y=2x2【点睛】这道
21、题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性21、见解析【解析】在DABC和DEAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出BDAE证得DABCDEAD,继而证得ACDE.【详解】四边形ABCD为平行四边形,ADBC,ADBC,DAEAEB.ABAE,AEBB.BDAE.在ABC和AED中,ABCEAD(SAS),AC=DE.【点睛】本题主要考查了平行四边形的基本性质和全等三角形的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、(1)当4x6时,w1=x2+12x35,当6x8时,
22、w2=x2+7x23;(2)最快在第7个月可还清10万元的无息贷款【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价成本)销售量费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,直线AB的解析式为:y=x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=x+5,工资及其他费作为:0.45+1=3万元,当4x6时,w1=(x4)(x+8)3=x2+12x35,当6x8时,
23、w2=(x4)(x+5)3=x2+7x23;(2)当4x6时,w1=x2+12x35=(x6)2+1,当x=6时,w1取最大值是1,当6x8时,w2=x2+7x23=(x7)2+,当x=7时,w2取最大值是1.5,=6,即最快在第7个月可还清10万元的无息贷款点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高23、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即
24、可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AECECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键24、(1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得1130岁的人数所占百分比最大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:40083%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.