2023届江苏省苏州市高新区实验初级中学中考数学猜题卷含解析.doc

上传人:lil****205 文档编号:87838887 上传时间:2023-04-18 格式:DOC 页数:19 大小:718KB
返回 下载 相关 举报
2023届江苏省苏州市高新区实验初级中学中考数学猜题卷含解析.doc_第1页
第1页 / 共19页
2023届江苏省苏州市高新区实验初级中学中考数学猜题卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届江苏省苏州市高新区实验初级中学中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省苏州市高新区实验初级中学中考数学猜题卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()Aa13,b=13 Ba13,b13 Ca13,b13

2、 Da13,b=132不等式组的解集表示在数轴上正确的是()ABCD3如图,反比例函数y的图象与直线yx的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D24若正六边形的边长为6,则其外接圆半径为( )A3B3C3D65如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=6实数的倒数是( )ABCD7如图,ABCD,点E在线段BC上,CD=CE,若ABC=30,则D为()A85B75C60D308如图,一艘海轮位于灯塔P的南

3、偏东70方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40的N处,则N处与灯塔P的 距离为A40海里B60海里C70海里D80海里9在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD10已知O的半径为5,若OP=6,则点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法判断11O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D812如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180得c2,交x轴于点A2

4、;将c2绕点A2旋转180得c3,交x轴于点A3如此进行下去,若点P(103,m)在图象上,那么m的值是()A2B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13已知:如图,AD、BE分别是ABC的中线和角平分线,ADBE,ADBE6,则AC的长等于_14观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)15分式有意义时,x的取值范围是_16在33方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_2x32y34y17如图,二次函数y=ax2+bx+c(a0)的图象与轴相交于点A、B

5、,若其对称轴为直线x=2,则OBOA的值为_18如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去则点B6的坐标_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径20(6分)如图,一次函数ykx+b与反比例函数y(x0)的图象交于A(m,6),B(3,n)两点求

6、一次函数关系式;根据图象直接写出kx+b0的x的取值范围;求AOB的面积21(6分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=1(1)若CE=1,求BC的长;(1)求证:AM=DF+ME22(8分)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG=4,GF=6,求正方形

7、ABCD的边长23(8分)(1)(ab)2a(a2b)+(2a+b)(2ab)(2)(m1)24(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率25(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(6,n),与x轴交于点C(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b的x的取值范围;(3)若点P在x轴上

8、,且SACP=,求点P的坐标26(12分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C求证:CBP=ADB若OA=2,AB=1,求线段BP的长.27(12分)如图,在ABC中,C=90,AD平分CAB,交CB于点D,过点D作DEAB,于点E求证:ACDAED;若B=30,CD=1,求BD的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题解析:原来的平均数是13岁,1323=299(岁),正确的平均数a=12.9713,原来的中位数13岁,将14岁写成15岁,

9、最中间的数还是13岁,b=13;故选A考点:1.平均数;2.中位数.2、C【解析】根据题意先解出的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.3、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则ABC的面积=2|k|=24=1故选A考点:反比例函数系数k的几何意义4、D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径【详解】如图为正六边形的外接圆,ABCDEF是正六边形,AOF=10,

10、OA=OF, AOF是等边三角形,OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1故选D【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.5、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,符合题意【详解】A.ADBC,AEFCBF, ,故A正确,

11、不符合题意;B. 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.6、D【解析】因为,所以的倒数是.故选D.7、B【解析】分析:先由ABCD,得C=ABC=30,CD=CE,

12、得D=CED,再根据三角形内角和定理得,C+D+CED=180,即30+2D=180,从而求出D详解:ABCD,C=ABC=30,又CD=CE,D=CED,C+D+CED=180,即30+2D=180,D=75故选B点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出C,再由CD=CE得出D=CED,由三角形内角和定理求出D8、D【解析】分析:依题意,知MN40海里/小时2小时80海里,根据方向角的意义和平行的性质,M70,N40,根据三角形内角和定理得MPN70MMPN70NPNM80海里故选D9、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关

13、系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键10、B【解析】比较OP与半径的大小即可判断.【详解】,点P在外,故选B【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.11、C【解析】根据题意可以求出这个正n边形的中心角是60,即可求出边数.【详解】O是一个正n边形的外接圆,若O的半径与这

14、个正n边形的边长相等,则这个正n边形的中心角是60, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.12、C【解析】求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解【详解】令,则=0,解得,由图可知,抛物线在x轴下方,相当于抛物线向右平移4(261)=100个单位得到得到,再将绕点旋转180得,此时的解析式为y=(x100)(x1004)=(x100)(x104), 在第26段抛物线上,m=(103100)(103104)=3.故答案是

15、:C.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:如图,过点C作CFAD交AD的延长线于点F,可得BECF,易证BGDCFD,所以GD=DF,BG=CF;又因BE是ABC的角平分线且ADBE,BG是公共边,可证得ABGDBG,所以AG=GD=3;由BECF可得AGEAFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在RtAFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.考点:全等三角形的判定及性质

16、;相似三角形的判定及性质;勾股定理.14、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型15、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方数为非负数,分式有意义,分母不为216、0【解析

17、】根据题意列出方程组,求出方程组的解即可得到结果【详解】解:根据题意得:,即,解得:,则x+y1+10,故答案为0【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键17、4【解析】试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x

18、的负半轴,则点的横坐标的相反数就是线段的长度.18、 (-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1又因为B6在x轴负半轴,所以B6(-1,0)解:如图所示正方形OBB1C,OB1=,B1所在的象限为第一象限;OB2=()2,B2在x轴正半轴;OB3=()3,B3所在的象限为第四象限;OB4=()4,B4在y轴负半轴;OB5=()5,B5所在的象限为第三象限;OB6=()6=1,

19、B6在x轴负半轴B6(-1,0)故答案为(-1,0)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90,AB=2半径为1.120、(1)y2x1 ;(2)1x2 ;(2)AOB的面积为1 .【解析】试题分析:(1)首先根据A(m

20、,6),B(2,n)两点在反比例函数y=(x0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可(2)由-2x+1-0,求出x的取值范围即可(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出AOB的面积是多少即可试题解析:(1)A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,6=,解得m=1,n=2,A(1,6),B(2,2),A(1,6),B(2,2)在一次函数y=kx+b的图象上,解得,y=-2x+1(2)由-2x+1-0,解得0x1或x2(2)当x=0时,y=-20+1=1,C点的

21、坐标是(0,1);当y=0时,0=-2x+1,解得x=4,D点的坐标是(4,0);SAOB=41-11-42=16-4-4=121、 (1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得ABCD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(1)先利用“边角边”证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明CDF和BGF全等

22、,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证试题解析:(1)四边形ABCD是菱形,ABCD,1=ACD,1=1,ACD=1,MC=MD,MECD,CD=1CE,CE=1,CD=1,BC=CD=1;(1)AM=DF+ME证明:如图,F为边BC的中点, BF=CF=BC,CF=CE,在菱形ABCD中,AC平分BCD,ACB=ACD,在CEM和CFM中,CEMCFM(SAS),ME=MF,延长AB交DF的延长线于点G,ABCD,G=1,1=1,1=G,AM=MG,在CDF和BGF中,CDFBGF(AAS),GF=DF,由图形可知,GM=GF+MF,AM=DF+ME2

23、2、 (1) 45(1) MN1=ND1+DH1理由见解析;(3)11.【解析】(1)先根据AGEF得出ABE和AGE是直角三角形,再根据HL定理得出ABEAGE,故可得出BAE=GAE,同理可得出GAF=DAF,由此可得出结论;(1)由旋转的性质得出BAM=DAH,再根据SAS定理得出AMNAHN,故可得出MN=HN再由BAD=90,AB=AD可知ABD=ADB=45,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值【详解】解:(1)在正方形ABCD中,B=D=90,AGEF,ABE和AGE是直角三角形在RtABE和RtA

24、GE中,ABEAGE(HL),BAE=GAE同理,GAF=DAFEAF=EAG+FAG=BAD=45(1)MN1=ND1+DH1由旋转可知:BAM=DAH,BAM+DAN=45,HAN=DAH+DAN=45HAN=MAN在AMN与AHN中,AMNAHN(SAS),MN=HNBAD=90,AB=AD,ABD=ADB=45HDN=HDA+ADB=90NH1=ND1+DH1MN1=ND1+DH1(3)由(1)知,BE=EG=4,DF=FG=2设正方形ABCD的边长为x,则CE=x-4,CF=x-2CE1+CF1=EF1,(x-4)1+(x-2)1=101解这个方程,得x1=11,x1=-1(不合题意

25、,舍去)正方形ABCD的边长为11【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中23、(1) ;(2) 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(ab)2a(a2b)+(2a+b)(2ab)=a22ab+b2a2+2ab+4a2b2=4a2;(2)= = = =24、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球

26、上的数字和为偶数的有5种情况,再利用概率公式即可求得答案试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,两次摸出的球上的数字和为偶数的概率为:考点:列表法与树状图法25、(1);(1)-6x0或1x;(3)(-1,0)或(-6,0)【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SACP=SBOC,即可得出|x+4|=1,解之即可得出结论【

27、详解】(1)点A(m,3),B(-6,n)在双曲线y=上,m=1,n=-1,A(1,3),B(-6,-1)将(1,3),B(-6,-1)带入y=kx+b, 得:,解得,直线的解析式为y=x+1(1)由函数图像可知,当kx+b时,-6x0或1x;(3)当y=x+1=0时,x=-4,点C(-4,0)设点P的坐标为(x,0),如图,SACP=SBOC,A(1,3),B(-6,-1),3|x-(-4)|=|0-(-4)|-1|,即|x+4|=1,解得:x1=-6,x1=-1点P的坐标为(-6,0)或(-1,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定

28、系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及SACP=SBOC,得出|x+4|=126、(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到ABD=90,再根据切线的性质得到OBC=90,然后利用等量代换进行证明;(2)证明AOPABD,然后利用相似比求BP的长详(1)证明:连接OB,如图,AD是O的直径,ABD=90,A+ADB=90,BC为切线,OBBC,OBC=90,OBA+CBP=90,而OA=OB,A=OBA,CBP=

29、ADB;(2)解:OPAD,POA=90,P+A=90,P=D,AOPABD,即,BP=1点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和相似三角形的判定与性质27、(1)见解析(2)BD=2【解析】解:(1)证明:AD平分CAB,DEAB,C=90,CD=ED,DEA=C=90在RtACD和RtAED中,RtACDRtAED(HL)(2)RtACDRtAED ,CD=1,DC=DE=1DEAB,DEB=90B=30,BD=2DE=2(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可(2)求出DEB=90,DE=1,根据含30度角的直角三角形性质求出即可

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁