《2023届浙江省嘉兴市南湖区实验达标名校中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省嘉兴市南湖区实验达标名校中考数学押题试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;b0;2c3bn(an+b)(n1),其中正确的结论有( )A2个B3个C4个D5个2若分式有意义,则的取值范围是( )A;B;C;D.3下
2、列计算正确的是( )ABCD4如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习5关于x的不等式的解集为x3,那么a的取值范围为()Aa3Ba3Ca3Da36将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+37下列二次根式中,的同类二次根式是()ABCD8已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(
3、如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对9有一个数用科学记数法表示为5.2105,则这个数是()A520000BC52000D520000010如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )A-5B-2C3D5二、填空题(共7小题,每小题3分,满分21分)11如图,一组平行横格线
4、,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于_12如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将OAB缩小得到OAB,若OAB与OAB的相似比为2:1,则点B(3,2)的对应点B的坐标为_13化简:_14早春二月的某一天,大连市南部地区的平均气温为3,北部地区的平均气温为6,则当天南部地区比北部地区的平均气温高_15如图,从甲楼底部A处测得乙楼顶部C处的仰角是30,从甲楼顶部B处测得乙楼底部D处的俯角是45,已知甲楼的高AB是120m,则乙楼的高CD是_m(结果保留根号)16如图,经过点B(2,0)的直线与直线相
5、交于点A(1,2),则不等式的解集为 17因式分解:9a3bab_三、解答题(共7小题,满分69分)18(10分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数19(5分)在平面直角坐标系中,一次函数(a0)的图象与反比例函数的图象
6、交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH轴,垂足为点H,OH=3,tanAOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求AHO的周长.20(8分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?若该工厂新购得65张规格
7、为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共_只21(10分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?22(10分)在平面直角坐标系中,已知直线yx+4和点M(3,2)(
8、1)判断点M是否在直线yx+4上,并说明理由;(2)将直线yx+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线ykx+b经过点M且与直线yx+4交点的横坐标为n,当ykx+b随x的增大而增大时,则n取值范围是_23(12分)某景区商店销售一种纪念品,每件的进货价为40元经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润24(14分)如图,已知AB是圆O的直径,弦CDAB
9、,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F(1)求圆O的半径;(2)如果AE=6,求EF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】观察图象可知a0,b0,c0,由此即可判定;当x=1时,y=ab+c由此可判定;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,由此可判定;当x=3时函数值小于0,即y=9a+3b+c0,且x= =1,可得a=,代入y=9a+3b+c0即可判定;当x=1时,y的值最大此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定.【详解】由图象可知:a0,b0,
10、c0,abc0,故此选项错误;当x=1时,y=ab+c0,即ba+c,故此选项错误;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,故此选项正确;当x=3时函数值小于0,y=9a+3b+c0,且x=1即a=,代入得9()+3b+c0,得2c3b,故此选项正确;当x=1时,y的值最大此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+can2+bn+c,故a+ban2+bn,即a+bn(an+b),故此选项正确正确故选B【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键2、B【解析】分式的分母不为零,
11、即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零3、A【解析】原式各项计算得到结果,即可做出判断【详解】A、原式=,正确;B、原式不能合并,错误;C、原式=,错误;D、原式=2,错误故选A【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键4、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相
12、对面入手分析及解答问题.5、D【解析】分析:先解第一个不等式得到x3,由于不等式组的解集为x3,则利用同大取大可得到a的范围详解:解不等式2(x-1)4,得:x3,解不等式a-x0,得:xa,不等式组的解集为x3,a3,故选D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到6、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x
13、6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键7、C【解析】先将每个选项的二次根式化简后再判断.【详解】解:A:,与不是同类二次根式;B:被开方数是2x,故与不是同类二次根式;C:=,与是同类二次根式;D:=2,与不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的概念.8、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三
14、角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性9、A【解析】科学记数法的表
15、示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】5.2105=520000, 故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、B【解析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把
16、B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k1时直线y=kx-2与线段AB有交点,从而能得到正确选项【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k1即k-3或k1所以直线y=kx-2与线段AB有交点,则k的值不可能是-2故选B【点睛】本题考查了一次函数y=kx+b(k0)的性质:当k0时,图象必过第一、三象限,k越大直线越靠近y轴;
17、当k0时,图象必过第二、四象限,k越小直线越靠近y轴二、填空题(共7小题,每小题3分,满分21分)11、2:1【解析】过点O作OEAB于点E,延长EO交CD于点F,可得OFCD,由AB/CD,可得AOBDOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OEAB于点E,延长EO交CD于点F,AB/CD,OFD=OEA=90,即OFCD,AB/CD,AOBDOC,又OEAB,OFCD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,=,故答案为:2:1【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.12
18、、(-,1)【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k进行解答【详解】解:以原点O为位似中心,相似比为:2:1,将OAB缩小为OAB,点B(3,2)则点B(3,2)的对应点B的坐标为:(-,1),故答案为(-,1)【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k13、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14、3【解析】用南部
19、气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度【详解】解:(3)(6)3+63答:当天南部地区比北部地区的平均气温高3,故答案为:3.【点睛】本题考查了有理数的减法运算法则,减法运算法则:减去一个数等于加上这个数的相反数15、40【解析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案【详解】解:由题意可得:BDA=45,则AB=AD=120m,又CAD=30,在RtADC中,tanCDA=tan30=,解得:CD=40(m),故答案为40【点睛】此题主要考查了解直角三角形的应用,正确得出tanCDA=tan30=是解题关键16、
20、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围由图象可知,此时17、ab(3a+1)(3a-1)【解析】试题分析:原式提取公因式后,利用平方差公式分解即可试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1)考点: 提公因式法与公式法的综合运用三、解答题(共7小题,满分69分)18、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人【解析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人
21、数课外阅读时间满足的百分比即得所求【详解】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇形的圆心角为:,补全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比19、(1)一次函数为,反比
22、例函数为;(2)AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)tanAOH= AH=OH=4 A(-4,3),代入,得k=-43=-12 反比例函数为 m=6 B(6,-2)=,b=1 一次函数为 (2) AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式20、(1
23、)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1【解析】表示出竖式箱子所用板材数量进而得出总金额即可得出答案;设制作竖式箱子a只,横式箱子b只,利用A型板材65张、B型板材110张,得出方程组求出答案;设裁剪出B型板材m张,则可裁A型板材张,进而得出方程组求出符合题意的答案【详解】解:设最多可制作竖式箱子x只,则A型板材x张,B型板材4x张,根据题意得 解得答:最多可以做25只竖式箱子设制作竖式箱子a只,横式箱子b只,根据题意,得,解得:答:能制作竖式、横式两种无盖箱子分别为5只和30只设裁剪出B型板材m张,则可裁A型板材张,由题意得:,整理得,
24、竖式箱子不少于20只,或22,这时,或,则能制作两种箱子共:或故答案为47或1【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式21、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值
25、范围内求总产量的最大值试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x(30-x),解得x10,设全部收购该基地生姜的年总收入为y元,则y=82000x+72500(30-x)=-1500x+525000,y随x的增大而减小,当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次
26、函数的应用关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式22、(1)点M(1,2)不在直线y=x+4上,理由见解析;(2)平移的距离为1或2;(1)2n1【解析】(1)将x=1代入y=-x+4,求出y=-1+4=12,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b分两种情况进行讨论:点M(1,2)关于x轴的对称点为点M1(1,-2);点M(1,2)关于y轴的对称点为点M2(-1,2)分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k由直线y=kx+b与直线y=-x+4交
27、点的横坐标为n,得出y=kn+b=-n+4,k=根据y=kx+b随x的增大而增大,得到k0,即0,那么,或,分别解不等式组即可求出n的取值范围【详解】(1)点M不在直线y=x+4上,理由如下:当x=1时,y=1+4=12,点M(1,2)不在直线y=x+4上;(2)设直线y=x+4沿y轴平移后的解析式为y=x+4+b点M(1,2)关于x轴的对称点为点M1(1,2),点M1(1,2)在直线y=x+4+b上,2=1+4+b,b=1,即平移的距离为1;点M(1,2)关于y轴的对称点为点M2(1,2),点M2(1,2)在直线y=x+4+b上,2=1+4+b,b=2,即平移的距离为2综上所述,平移的距离为
28、1或2;(1)直线y=kx+b经过点M(1,2),2=1k+b,b=21k直线y=kx+b与直线y=x+4交点的横坐标为n,y=kn+b=n+4,kn+21k=n+4,k=y=kx+b随x的增大而增大,k0,即0,或,不等式组无解,不等式组的解集为2n1n的取值范围是2n1故答案为2n1【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握23、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根
29、据等量关系“利润=(售价进价)销量”列出函数关系式,根据二次函数的性质,即可解答详解:(1)由题意得:20010(5250)=20020=180(件),故答案为180;(2)由题意得:y=(x40)20010(x50)=10x2+1100x28000=10(x55)2+2250每件销售价为55元时,获得最大利润;最大利润为2250元点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握24、 (1) 圆的半径为4.5;(2) EF=【解析】(1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;(2)过O作OGAE于G,证明AGOAHF,列比例式可得AF的长,从而得EF的长【详解】(1)连接OD,直径AB弦CD,CD=4,DH=CH=CD=2,在RtODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AHOA)2+DH2,即r2=(5r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OGAE于G,AG=AE=6=3,A=A,AGO=AHF,AGOAHF,AF=,EF=AFAE=6=【点睛】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.