《2023届江苏省无锡江阴市重点达标名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省无锡江阴市重点达标名校十校联考最后数学试题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图图形中,既是轴对称图形,又是中心对称图形的是()ABCD2“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两
2、个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根3如图,已知ABC中,C=90,AC=BC=,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB的长为()ABCD14十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A81012B81013C81014D0.810135已知关于x的方程恰有一个实根,则满足条件
3、的实数a的值的个数为()A1B2C3D46我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD7如图,ABED,CD=BF,若ABCEDF,则还需要补充的条件可以是()AAC=EFBBC=DFCAB=DEDB=E8已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定9如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的正切值是( )AB2C
4、D10如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:ac1;a+b=1;4acb2=4a;a+b+c1其中正确结论的个数是()A1 B2 C3 D411 “保护水资源,节约用水”应成为每个公民的自觉行为下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨)4569户数(户)3421A中位数是5吨B众数是5吨C极差是3吨D平均数是5.3吨12空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )A0.129102B1.29102C1.29103D12.9101二、填
5、空题:(本大题共6个小题,每小题4分,共24分)13如图,已知函数y3x+b和yax3的图象交于点P(2,5),则根据图象可得不等式3x+bax3的解集是_14如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是.15已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为_.16为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分则这组数据的中位数为_分17如图,利用
6、图形面积的不同表示方法,能够得到的代数恒等式是_(写出一个即可)18不等式组有2个整数解,则m的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) (yz)1+(xy)1+(zx)1(y+z1x)1+(z+x1y)1+(x+y1z)1求的值20(6分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直
7、线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由21(6分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 ACCB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒(1)当点 P 经过
8、点 C 时,求直线 DP 的函数解析式;(2)如图,把长方形沿着 OP 折叠,点 B 的对应点 B恰好落在 AC 边上,求点 P 的坐标(3)点 P 在运动过程中是否存在使BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由22(8分)如图,点C在线段AB上,ADEB,ACBE,ADBC,CF平分DCE求证:CFDE于点F23(8分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”(1)在点C1(2,3+2),点C2(0,2),点C3(3+,)中,线段AB的“等长
9、点”是点_;(2)若点D(m,n)是线段AB的“等长点”,且DAB=60,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围24(10分)如图,直线yx+4与x轴交于点A,与y轴交于点B抛物线yx2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b ,c ,点C的坐标为 如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为mPQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值如图2,若点P是第四象限的抛物线上的一点连接PB与AP,当PBA+CBO45时求PBA的面积25(10分)发现如图1,在有一
10、个“凹角A1A2A3”n边形A1A2A3A4An中(n为大于3的整数),A1A2A3A1+A3+A4+A5+A6+An(n4)180验证如图2,在有一个“凹角ABC”的四边形ABCD中,证明:ABCA+C+D证明3,在有一个“凹角ABC”的六边形ABCDEF中,证明;ABCA+C+D+E+F360延伸如图4,在有两个连续“凹角A1A2A3和A2A3A4”的四边形A1A2A3A4An中(n为大于4的整数),A1A2A3+A2A3A4A1+A4+A5+A6+An(n )18026(12分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.(1)若
11、A、B移动到如图所示位置,计算的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.27(12分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出
12、最省钱的购买方案,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.2、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所
13、以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.3、C【解析】延长BC交AB于D,根据等边三角形的性质可得BDAB,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、CD,然后根据BC=BD-CD计算即可得解.【详解】解:延长BC交AB于D,连接BB,如图, 在RtACB中,AB=AC=2,BC垂直平分AB,CD=AB=1,BD为等边三角形ABB的高,BD=AB=,BC=BD-CD=-1故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60得到ABB是等边三角形是解本题的关键.4
14、、B【解析】80万亿用科学记数法表示为81故选B点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.5、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分
15、母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x
16、1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键6、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到
17、问题中的等量关系:总人数不变,列出相应的方程即可.7、C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得B=D,因为,若,则还需要补充的条件可以是:AB=DE,或E=A, EFD=ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.8、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质9、A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到ABC是直角三角形,根据正切的定义计算即可详解:连接AC,由网格特点和勾股定理可知,A
18、C=,AC2+AB2=10,BC2=10,AC2+AB2=BC2,ABC是直角三角形,tanABC=.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键10、C【解析】根据图象知道:a1,c1,ac1,故正确;顶点坐标为(1/2 ,1),x=-b/2a =1/2 ,a+b=1,故正确;根据图象知道:x=1时,y=a+b+c1,故错误;顶点坐标为(1/2 ,1),=1,4ac-b2=4a,故正确其中正确的是故选C11、C【解析】根据中位数、众数、极差和平均数的概念,对选
19、项一一分析,即可选择正确答案【详解】解:A、中位数(5+5)25(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为94=5(吨),错误,故选项正确;D、平均数=(43+54+62+91)10=5.3,正确,故选项错误故选:C【点睛】此题主要考查了平均数、中位数、众数和极差的概念要掌握这些基本概念才能熟练解题12、C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29101故选C考点:科学记数法表示较小的数二、填空题:(本大题共6个小题,每小题4分,共24分)13、x1【解析】根据函数y=3x+b和y=ax-3的图象交于点P(-1
20、,-5),然后根据图象即可得到不等式3x+bax-3的解集【详解】解:函数y=3x+b和y=ax-3的图象交于点P(-1,-5),不等式3x+bax-3的解集是x-1,故答案为:x-1【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.14、2k。【解析】由图可知,AOB=45,直线OA的解析式为y=x,联立,消掉y得,由解得,.当时,抛物线与OA有一个交点,此交点的横坐标为1.点B的坐标为(2,0),OA=2,点A的坐标为().交点在线段AO上.当抛物线经过点B(2,0)时,解得k=2.要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是2k.【详解】请
21、在此输入详解!15、【解析】试题分析:当n=3时,A=0.3178,B=1,AB;当n=4时,A=0.2679,B=0.4142,AB;当n=5时,A=0.2631,B=0.3178,AB;当n=6时,A=0.2134,B=0.2679,AB;以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n3时,A、B的关系始终是AB.16、1【解析】13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,第7个数是1分,中位数为1分,故答案为117、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此
22、类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.18、1m2【解析】首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.【详解】不等式组有个整数解,其整数解有、这个,.故答案为:.【点睛】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.三、解答题:
23、(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1【解析】通过已知等式化简得到未知量的关系,代入目标式子求值.【详解】(yz)1+(xy)1+(zx)1=(y+z1x)1+(z+x1y)1+(x+y1z)1(yz)1(y+z1x)1+(xy)1(x+y1z)1+(zx)1(z+x1y)1=2,(yz+y+z1x)(yzyz+1x)+(xy+x+y1z)(xyxy+1z)+(zx+z+x1y)(zxzx+1y)=2,1x1+1y1+1z11xy1xz1yz=2,(xy)1+(xz)1+(yz)1=2x,y,z均为实数,x=y=z20、(1)A(3,0),y=x+;(2)
24、D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(
25、1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若C
26、D最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNB
27、D=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度21、(1)y=x+2;(2)y=x+2;(2)S=2t+16,点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;(2)当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时
28、,底边OD为固定值,表示出高,即可列出S与t的关系式;设P(m,1),则PB=PB=m,根据勾股定理求出m的值,求出此时P坐标即可;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可详解:(1)如图1,OA=6,OB=1,四边形OACB为长方形,C(6,1)设此时直线DP解析式为y=kx+b,把(0,2),C(6,1)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+12t=162t,S=2(162t)=2t+16;设P(m,1),则PB=PB=m,如图
29、2,OB=OB=1,OA=6,AB=8,BC=18=2,PC=6m,m2=22+(6m)2,解得m=则此时点P的坐标是(,1);(3)存在,理由为:若BDP为等腰三角形,分三种情况考虑:如图3,当BD=BP1=OBOD=12=8,在RtBCP1中,BP1=8,BC=6,根据勾股定理得:CP1=2,AP1=12,即P1(6,12);当BP2=DP2时,此时P2(6,6);当DB=DP3=8时,在RtDEP3中,DE=6,根据勾股定理得:P3E=2,AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)点睛:此题属于一次函数综合题,涉及
30、的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键22、证明见解析【解析】根据平行线性质得出A=B,根据SAS证ACDBEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可【详解】ADBE,AB在ACD和BEC中,ACDBEC(SAS),DCCE CF平分DCE,CFDE(三线合一)【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力23、(1)C1,C3;(2)D(,0)或D(,3);(3)k 【解析】(1
31、)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论【详解】(1)A(0,3),B(,0),AB=2,点C1(2,3+2),AC1=2,AC1=AB,C1是线段AB的“等长点”,点C2(0,2),AC2=5,BC2=,AC2AB,BC2AB,C2不是线段AB的“等长点”,点C3(3+,),BC3=2,BC3=AB,C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在RtAOB中,OA=3,OB=,AB=2,tanOAB=,OAB=30,当点D
32、在y轴左侧时,DAB=60,DAO=DABBAO=30,点D(m,n)是线段AB的“等长点”,AD=AB,D(,0),m=,n=0,当点D在y轴右侧时,DAB=60,DAO=BAO+DAB=90,n=3,点D(m,n)是线段AB的“等长点”,AD=AB=2,m=2;D(,3)(3)如图2,直线y=kx+3k=k(x+3),直线y=kx+3k恒过一点P(3,0),在RtAOP中,OA=3,OP=3,APO=30,PAO=60,BAP=90,当PF与B相切时交y轴于F,PA切B于A,点F就是直线y=kx+3k与B的切点,F(0,3),3k=3,k=,当直线y=kx+3k与A相切时交y轴于G切点为E
33、,AEG=OPG=90,AEGPOG,=,解得:k=或k=(舍去)直线y=kx+3k上至少存在一个线段AB的“等长点”,k,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点24、(3)3, 2,C(2,4);(2)ym2+m ,PQ与OQ的比值的最大值为;(3)SPBA3【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ
34、的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解(3)求得P点坐标,利用图形割补法求解即可【详解】(3)直线yx+2与x轴交于点A,与y轴交于点BA(2,4),B(4,2)又抛物线过B(4,2)c2把A(2,4)代入yx2+bx+2得,422+2b+2,解得,b3抛物线解析式为,yx2+x+2令x2+x+24,解得,x2或x2C(2,4)(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D设P(m,m2+m+2),Q(n,n+2),则PEm2+m+2,QDn+2又
35、yn又,即把n代入上式得,整理得,2ym2+2mym2+mymax即PQ与OQ的比值的最大值为(3)如图2,OBAOBP+PBA25PBA+CBO25OBPCBO此时PB过点(2,4)设直线PB解析式为,ykx+2把点(2,4)代入上式得,42k+2解得,k2直线PB解析式为,y2x+2令2x+2x2+x+2整理得, x23x4解得,x4(舍去)或x5当x5时,2x+225+27P(5,7)过P作PHcy轴于点H则S四边形OHPA(OA+PH)OH(2+5)724SOABOAOB227SBHPPHBH5335SPBAS四边形OHPA+SOABSBHP24+7353【点睛】本题考查了函数图象与坐
36、标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力还考查了运用图形割补法求解坐标系内图形的面积的方法25、(1)见解析;(2)见解析;(3)1【解析】(1)如图2,延长AB交CD于E,可知ABCBEC+C,BECA+D,即可解答(2)如图3,延长AB交CD于G,可知ABCBGC+C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知A1A2A3+A2A3A4A1+2+A4+4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则ABCBEC+C,BEC
37、A+D,ABCA+C+D;(2)如图3,延长AB交CD于G,则ABCBGC+C,BGC180BGC,BGD3180(A+D+E+F),ABCA+C+D+E+F310;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,则A1A2A3+A2A3A4A1+2+A4+4,1+3(n22)180(A5+A1+An),而2+4310(1+3)310(n22)180(A5+A1+An),A1A2A3+A2A3A4A1+A4+A5+A1+An(n1)180故答案为1【点睛】此题考查多边形的内角和外角,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型26、(1)a+b的值为2;(2)
38、a的值为3,b|a|的值为3;(1)b比a大27.1【解析】(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,a+b=2故a+b的值为2 (2)由B点不动,点A向左移动1个单位长,可得a=3,b=2b|a|=b+a=23=3故a的值为3,b|a|的值为3 (1)点A不动,点B向右移动15.1个单位长a=10,b=17.1ba=17.1(10)=27.1故b比a大27.1【点睛】本题主要考查了数
39、轴,关键在于数形结合思想.27、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析【解析】(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案【详解】解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据题意得: ,解得: 答:甲种树的单价为50元/棵,乙种树的单价为40元/棵(2)设购买甲种树a棵,则购买乙种树(200a)棵,根据题意得: 解得: a为整数,a1甲种树的单价比乙种树的单价贵,当购买1棵甲种树、133棵乙种树时,购买费用最低【点睛】一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.