《2023届江苏省扬州江都区六校联考中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省扬州江都区六校联考中考数学考试模拟冲刺卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的是( )A“买一张电影票,座位号为偶数”是必然事件B若甲、乙两组数据的方差分别为S甲20.3,S乙20.1,则甲组数据比乙组数据稳定C一组数据2,4,5,5,3,6
2、的众数是5D一组数据2,4,5,5,3,6的平均数是522017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长将2098.7亿元用科学记数法表示是()A2.098 7103B2.098 71010C2.098 71011D2.098 710123若,是一元二次方程3x2+2x9=0的两根,则的值是( ).ABCD4点A(m4,12m)在第四象限,则m的取值范围是 ()AmBm4Cm4Dm45观察下列图案,是轴对称而不是中心对称的是()ABCD
3、6如图,在正方形网格中建立平面直角坐标系,若,则点C的坐标为( )ABCD7设x1,x2是一元二次方程x22x50的两根,则x12+x22的值为()A6B8C14D168关于x的不等式x-b0恰有两个负整数解,则b的取值范围是A B C D 9下列计算正确的是ABC D10如果一个正多边形内角和等于1080,那么这个正多边形的每一个外角等于()ABCD11下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()ABCD12如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在反比例函数y=(x0
4、)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为2,4,6,8,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,Sn,则S1+S2+S3+Sn=_(用含n的代数式表示)14已知二次函数,与的部分对应值如下表所示:-10123461-2-3-2m下面有四个论断:抛物线的顶点为;关于的方程的解为;其中,正确的有_15如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若A=60,AB=4,则四边形BCNM的面积为_16关于的分式方程的解为负数,则的取值范围是_.17已知二次函数中,函数y与x的部
5、分对应值如下:.-101 23. 105212.则当时,x的取值范围是_.18如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值20(6分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”
6、现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜你认为这个游戏公平吗?试说明理由21(6分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3)求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围22(8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FA
7、B=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长23(8分)如图,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形(1)试探究线段AE与CG的关系,并说明理由(2)如图若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由当CDE为等腰三角形时,求CG的长24(10分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C
8、分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N(1)求反比例函数的解析式;(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标25(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖若某单位想要买5个水瓶和n(n10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买)26(12分)甲、乙
9、两公司各为“希望工程”捐款2000元已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?27(12分)如图,在ABC中,ACB=90,AC=1sinA=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC(1)求证;四边形PBEC是平行四边形;(2)填空:当AP的值为 时,四边形PBEC是矩形;当AP的值为 时,四边形PBEC是菱形参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据确定性事件、方差、众数以及平均数的定义进行解答
10、即可【详解】解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;B、若甲、乙两组数据的方差分别为S甲20.3,S乙20.1,则乙组数据比甲组数据稳定,此选项错误;C、一组数据2,4,5,5,3,6的众数是5,此选项正确;D、一组数据2,4,5,5,3,6的平均数是,此选项错误;故选:C【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、C【解析】将2098.7亿元用科学记数法表示是2.098710
11、11,故选:C点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.3、C【解析】分析:根据根与系数的关系可得出+=-、=-3,将其代入=中即可求出结论详解:、是一元二次方程3x2+2x-9=0的两根,+=-,=-3,=故选C点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键4、B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可【详解】解:点A(m-1,1-2m)在第四象限, 解不等式得,m1,解不等式得,m所以,不等式组的解集是m1,即m的取值范围是m1故选B【点睛】本
12、题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中
13、心对称图形这个旋转点,就叫做对称中心6、C【解析】根据A点坐标即可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,-1)故选:C【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型7、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+
14、bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 8、A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x的不等式x-b0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9、B【解析】试题分析:根据合并同类项的法则,可知,故A不正确;根据同底数幂的除法,知,故B正确;根据幂的乘方,知,故C不正确;根据完全平方公式,知,故D不正确.故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法
15、法则,幂的乘方,乘法公式进行计算.10、A【解析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360,即可求得答案【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,这个正多边形的每一个外角等于:3608=45故选A【点睛】此题考查了多边形的内角和与外角和的知识注意掌握多边形内角和定理:(n-2)180,外角和等于36011、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可详解:A是轴对称图形,不是中心对称图形; B是轴对称图形,也是中心对称图形; C是轴对称图形,不是中心对称图形; D是轴对称图
16、形,不是中心对称图形 故选B点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合12、B【解析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形【详解】从上面看,是正方形右边有一条斜线,如图:故选B【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、10【解析】过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是
17、点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案【详解】如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,则点Pn+1的坐标为(2n+2,),则OB=,点P1的横坐标为2,点P1的纵坐标为5,AB=5,S1+S2+S3+Sn=S矩形AP1DB=2(5)=10,故答案为10【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.14、【解析】根据图表求出函数对称轴,再
18、根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数yax2+bx+c(a0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;抛物线yax2+bx+c(a0)的顶点为(2,-3),结论正确;b24ac0,结论错误,应该是b24ac0;关于x的方程ax2+bx+c2的解为x11,x23,结论正确;m3,结论错误,其中,正确的有. 故答案为:【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.15、3【解析】如图,连接
19、BD首先证明BCD是等边三角形,推出SEBC=SDBC=42=4,再证明EMNEBC,可得=()2=,推出SEMN=,由此即可解决问题.【详解】解:如图,连接BD四边形ABCD是菱形,AB=BC=CD=AD=4,A=BCD=60,ADBC,BCD是等边三角形,SEBC=SDBC=42=4,EM=MB,EN=NC,MNBC,MN=BC,EMNEBC,=()2=,SEMN=,S阴=4-=3,故答案为3【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型16、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求
20、出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a0,且1-a-1解得:a1且a2,故答案为: a1且a2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析17、0x4【解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y5时,x的取值范围为0x4.故答案为0x0时,自变量x的取值范围【详解】解:(1)由二次函数的图象经过和两点,得,解这个方程组,得,抛物线的解析式为,(2)令,得解这个方程,得,此二次函数
21、的图象与轴的另一个交点的坐标为当时,【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.22、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,FAB=EDB, tanFAG=tanBDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)OB=OC=1,B(1,0),C(0,-1).,
22、解得,抛物线的解析式为. =,点D的坐标为(2,-8). (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FGx轴于点G,易求得OA=2,则AG=x+2,FG=.FAB=EDB,tanFAG=tanBDE,即,解得,(舍去).当x=7时,y=,点F的坐标为(7,). 当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,). (3)点P在x轴上,根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.PQ=MN,MT=2PT.设TP=n,则MT=2n. M(2+2n,n).点M在抛物线上,即.解得,(舍去
23、).MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.综上所述,菱形对角线MN的长为或. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,yax2bxc().列方程组求二次函数解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问
24、题的钥匙.23、(1)AE=CG,AECG,理由见解析;(2)位置关系保持不变,数量关系变为;理由见解析;当CDE为等腰三角形时,CG的长为或或【解析】试题分析:证明即可得出结论.位置关系保持不变,数量关系变为证明根据相似的性质即可得出.分成三种情况讨论即可.试题解析:(1) 理由是:如图1,四边形EFGD是正方形, 四边形ABCD是正方形, 即 (2)位置关系保持不变,数量关系变为 理由是:如图2,连接EG、DF交于点O,连接OC,四边形EFGD是矩形, Rt中,OG=OF,Rt中, D、E、F、C、G在以点O为圆心的圆上, DF为的直径, EG也是的直径,ECG=90,即 由知:设 分三种
25、情况:(i)当时,如图3,过E作于H,则EHAD, 由勾股定理得: (ii)当时,如图1,过D作于H, (iii)当时,如图5, 综上所述,当为等腰三角形时,CG的长为或或点睛:两组角对应,两三角形相似.24、(1);(2)点P的坐标是(0,4)或(0,4).【解析】(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)B(4,2),四边形OABC是矩形,OA=BC=2.将y=2代入3得:x=2,M(2,2).把M的坐标代入得:k=4,反比例函数的解析式是;(2
26、).OPM的面积与四边形BMON的面积相等,.AM=2,OP=4.点P的坐标是(0,4)或(0,4).25、(1)一个水瓶40元,一个水杯是8元;(2)当10n25时,选择乙商场购买更合算当n25时,选择甲商场购买更合算【解析】(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意得:3x+4(48x)152,解得:x40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(405+8n)80%160+6.4n乙商场所需费用为540+
27、(n52)8120+8n则n10,且n为整数,160+6.4n(120+8n)401.6n讨论:当10n25时,401.6n0,160+0.64n120+8n,选择乙商场购买更合算当n25时,401.6n0,即 160+0.64n120+8n,选择甲商场购买更合算【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.26、甲、乙两公司人均捐款分别为80元、100元【解析】试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.试题解析:设甲公司人均捐款x元 解得: 经检验,为原方程的根, 80+20=100答:甲、乙两公司人均各捐款为
28、80元、100元27、证明见解析;(2)9;12.5.【解析】(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)若四边形PBEC是矩形,则APC=90,求得AP即可;若四边形PBEC是菱形,则CP=PB,求得AP即可【详解】点D是BC的中点,BD=CDDE=PD,四边形PBEC是平行四边形;(2)当APC=90时,四边形PBEC是矩形AC=1sinA=,PC=12,由勾股定理得:AP=9,当AP的值为9时,四边形PBEC是矩形;在ABC中,ACB=90,AC=1sinA=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,AB=5x=2当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,当AP的值为12.5时,四边形PBEC是菱形【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质