《2023届河北省迁安市重点名校中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河北省迁安市重点名校中考数学最后冲刺模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系pat2+bt+c(a,b,c是常
2、数),如图记录了三次实验的数据根据上述函数模型和实验数据,可得到最佳加工时间为()A4.25分钟B4.00分钟C3.75分钟D3.50分钟2下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A B C D3在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差4如图,空心圆柱体的左视图是( )ABCD5随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分
3、钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )ABCD6不等式5+2x 1的解集在数轴上表示正确的是( ).ABCD7如图,A、B、C、D四个点均在O上,AOD=50,AODC,则B的度数为()A50 B55 C60 D658下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D49二次函数ya(x4)24(a0)的图象在2x3这一段位于x轴的下方,在6x7这一段位于
4、x轴的上方,则a的值为( )A1B1C2D210若分式 有意义,则x的取值范围是Ax1Bx1Cx1Dx0二、填空题(共7小题,每小题3分,满分21分)11函数中自变量x的取值范围是_12一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3)若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_13因式分解:_14如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,ACD=120,CD是O的切线:若O的半径为2,则图中阴影部分的面积为_15已知线段AB10cm,C为线段AB的黄金分割点(ACBC),则BC_16已知关于x的一元
5、二次方程(k5)x22x+2=0有实根,则k的取值范围为_17如图甲,对于平面上不大于90的MON,我们给出如下定义:如果点P在MON的内部,作PEOM,PFON,垂足分别为点E、F,那么称PE+PF的值为点P相对于MON的“点角距离”,记为d(P,MON)如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于xOy,满足d(P,xOy)=10,点P的坐标是_三、解答题(共7小题,满分69分)18(10分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(
6、1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.19(5分)已知:如图,在RtABO中,B=90,OAB=10,OA=1以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)
7、与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围20(8分)如图,AB是O的直径,CD与O相切于点C,与AB的延长线交于D(1)求证:ADCCDB;(2)若AC2,ABCD,求O半径21(10分)如图,在ABC中,ABC=90,以AB为直径的O与AC边交于点D,过点D的直线交BC边于点E,BDE=A判断直线DE与O的位置关系,并说明理由若O的半径R=5,tanA=,求线段CD的长22(10分)如图,在ABC中,ABC=90,BDAC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F
8、(1)当AE平分BAC时,求证:BEF=BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长23(12分)如图,在ABC中,C=90,BC4,AC1点P是斜边AB上一点,过点P作PMAB交边AC或BC于点M又过点P作AC的平行线,与过点M的PM的垂线交于点N设边APx,PMN与ABC重合部分图形的周长为y(1)AB (2)当点N在边BC上时,x (1)求y与x之间的函数关系式(4)在点N位于BC上方的条件下,直接写出过点N与ABC一个顶点的直线平分ABC面积时x的值24(14分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放
9、回,再随机地摸出一个小球采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=0.2,b=1.5,c=2,即p=0.2t2+1.5t2,当t=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.2、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:
10、简单几何体的三视图.3、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键4、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图5、D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可详解:设乘公交车平均每小时走x千米,根据题意可
11、列方程为:故选D点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可6、C【解析】先解不等式得到x-1,根据数轴表示数的方法得到解集在-1的左边【详解】5+1x1,移项得1x-4,系数化为1得x-1故选C【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心7、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50,则DOC=80,则AOC=130,根据同弧所对的圆周角等于圆心角度数的一半可得:B
12、=1302=65.考点:圆的基本性质8、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理9、A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1x
13、2这段位于x轴的上方,而抛物线在2x3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入ya(x4)24(a0)可求出a=1.故选A10、C【解析】分式分母不为0,所以,解得.故选:C.二、填空题(共7小题,每小题3分,满分21分)11、x2【解析】试题解析:根据题意得: 解得:.12、(,)或(,)【解析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得【详解】如图,当点A、B、C的对应点在第一象限时,由位似比为1:2知点A(0,)、B(,0)、C(,),该正方形的中心点的P的坐标为(,);当点A、B、C的对应点在第三象限时,由位似比为
14、1:2知点A(0,-)、B(-,0)、C(-,-),此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-)【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质13、x3(y+1)(y-1)【解析】先提取公因式x3,再利用平方差公式分解可得【详解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1)【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤-先提取公因式,再利用公式法分解14、 【解析】试题分析:连接OC,求出D和COD,求出边DC长,分别求出三角形OCD的面积和扇形CO
15、B的面积,即可求出答案连接OC,AC=CD,ACD=120,CAD=D=30,DC切O于C,OCCD,OCD=90,COD=60,在RtOCD中,OCD=90,D=30,OC=2,CD=2,阴影部分的面积是SOCDS扇形COB=22=2,故答案为2考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.15、(15-5)【解析】试题解析:C为线段AB的黄金分割点(ACBC),AC=AB=AC=10=5-5,BC=AB-AC=10-(5-5)=(15-5)cm考点:黄金分割16、【解析】若一元二次方程有实根,则根的判别式=b2-4ac0,且k-10,建立关于k的不等式组
16、,求出k的取值范围【详解】解:方程有两个实数根,=b2-4ac=(-2)2-42(k-1)=44-8k0,且k-10,解得:k且k1,故答案为k且k1【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根17、(6,4)或(4,6)【解析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,当点P在第一象限时,x+x-2=10,解得x=6,x-2=4,P(6,4);当点P在第三象限时,-x-x+2=10,解得x
17、=-4,x-2=-6,P(-4,-6)故答案为:(6,4)或(-4,-6)【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键三、解答题(共7小题,满分69分)18、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6x4.【解析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(312x)米依题意可列方程x(312x)72,即x215x361解得
18、x13,x22又312x3,即x6,x=2(2)依题意,得8312x3解得6x4面积Sx(312x)2(x)2(6x4)当x时,S有最大值,S最大; 当x4时,S有最小值,S最小4(3122)5 (3)令x(312x)41,得x215x511解得x15,x21 x的取值范围是5x419、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找
19、出和直角三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30,MPN=60PQA=90,PQPA,AQ=APcos30,S重叠部分=SAPQPQAQ即重叠部分的面积为探究如图2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3
20、,PDAB,OPD=OAB=30,cosOPD,OP,点P的坐标为(,0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题
21、,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键20、(1)见解析;(2) 【解析】分析: (1)首先连接CO,根据CD与O相切于点C,可得:OCD=90;然后根据AB是圆O的直径,可得:ACB=90,据此判断出CAD=BCD,即可推得ADCCDB(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据ADCCDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出O半径是多少详解:(1)证明:如图,连接CO,CD与O相切于点C,OCD=90,AB是圆O的直径,ACB=90,ACO=BCD,ACO=CAD,CAD=
22、BCD,在ADC和CDB中,ADCCDB(2)解:设CD为x,则AB=x,OC=OB=x,OCD=90,OD=x,BD=ODOB=xx=x,由(1)知,ADCCDB,=,即,解得CB=1,AB=,O半径是点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握21、(1) DE与O相切; 理由见解析;(2)【解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出ODDE,进而得出答案;(2)得出BCDACB,进而利用相似三角形的性质得出CD的长【详解】解:(1)直线DE与O相切理由如下:连接ODOA=ODODA=A又BDE=AODA=BDEAB是O直径ADB=90即ODA+
23、ODB=90BDE+ODB=90ODE=90ODDEDE与O相切;(2)R=5,AB=10,在RtABC中tanA=BC=ABtanA=10,AC=,BDC=ABC=90,BCD=ACBBCDACBCD=【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键22、(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得1=1,再根据等角的余角相等求出BEF=AFD,然后根据对顶角相等可得BFE=AFD,等量代换即可得解; (1)根据中点定义求出BC,利用勾股定理列式求出AB即可详解:(1)如图,AE平分BAC,1=1 BDAC,ABC
24、=90,1+BEF=1+AFD=90,BEF=AFD BFE=AFD(对顶角相等),BEF=BFE; (1)BE=1,BC=4,由勾股定理得:AB=2 点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键23、(1)2;(2);(1)详见解析;(4)满足条件的x的值为【解析】(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2(2)如图1中,四
25、边形PAMN是平行四边形, 当点在上时,(1)当时,如图1, 当时,如图2, y当时,如图1,(4)如图4中,当点是中点时,满足条件 .如图2中,当点是中点时,满足条件 .综上所述,满足条件的x的值为或【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.24、 (1)见解析;(2).【解析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,摸出的两个小球号码之和等于4的概率为=【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.