《2023届河北省秦皇岛市青龙满族自治县达标名校中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河北省秦皇岛市青龙满族自治县达标名校中考考前最后一卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各式中计算正确的是ABCD2如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数yx的图象被P
2、截得的弦AB的长为4,则a的值是()A4B3C3D32017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )A305.5104 B3.055102 C3.0551010 D3.05510114函数的自变量x的取值范围是( )Ax1Bx1Cx1Dx15将抛物线y(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A向下平移3个单位B向上平移3个单位C向左平移4个单位D向右平移4个单位6实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()Aa+c0Bb+c0CacbcDacbc
3、7下列计算结果是x5的为()Ax10x2 Bx6x Cx2x3 D(x3)28如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A8,9B8,8.5C16,8.5D16,10.59如图,直线a,b被直线c所截,若ab,1=50,3=120,则2的度数为()A80B70C60D5010某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )ABCD11实数a,b,c,d在数轴
4、上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个12把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )Aa=2,b=3Ba=-2,b=-3Ca=-2,b=3Da=2,b=-3二、填空题:(本大题共6个小题,每小题4分,共24分)13一艘轮船在小岛A的北偏东60方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45的C处,则该船行驶的速度为_海里/时14若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)_15将6本相同厚度的书叠起来,它们的高度是9厘米如果将这样相同厚度
5、的书叠起来的高度是42厘米,那么这些书有_本16如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,P与x轴交于O,A两点,点A的坐标为(6,0),P的半径为,则点P的坐标为_.17已知图中RtABC,B=90,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转 (0 360),得到线段AC,连接DC,当DC/BC时,旋转角度 的值为_,18太极揉推器是一种常见的健身器材基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm支架CD
6、,CE与立柱AB的夹角BCD=BCE=45,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CDFG,CEMN,则两个转盘的最低点F,N距离地面的高度差为_cm(结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W
7、(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?20(6分)二次函数y=ax2+bx+c(a,b,c为常数,且a1)中的x与y的部分对应值如表x1113y1353下列结论:ac1;当x1时,y的值随x值的增大而减小3是方程ax2+(b1)x+c=1的一个根;当1x3时,ax2+(b1)x+c1其中正确的结论是 21(6分)如图,在RtABC中,C90,以BC为直径作O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是O的切线22(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天售量(n件
8、)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050x90销售价格(元/件)x+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.23(8分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平
9、行线交BE的延长线于点F,连接CF,求证:AF=DC;若ABAC,试判断四边形ADCF的形状,并证明你的结论24(10分)如图,ABC中,ABAC1,BAC45,AEF是由ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D求证:BECF ;当四边形ACDE为菱形时,求BD的长25(10分)一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.26(12分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的
10、同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?27(12分)在ABCD中,过点D作DEAB于点E,点F在边CD上,DF=BE,连接AF,BF(1)求证:四边形DEBF是矩形;(2)若AF平分DAB,AE=3,BF=4,求ABCD的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与
11、积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.2、B【解析】试题解析:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B考点:1垂径定理;2一次函数图象上
12、点的坐标特征;3勾股定理3、C【解析】解:305.5亿=3.0551故选C4、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围试题解析:根据题意得:1-x0,解得:x1故选C考点:函数自变量的取值范围5、A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.6、D【解析】分析:根据图示,可得:cb0a
13、,据此逐项判定即可.详解: c0a,|c|a|,a+c0,选项A不符合题意; cb0,b+c0,选项B不符合题意;cb0a,c0,ac0,bc0,acbc,选项C不符合题意; ab,acbc,选项D符合题意故选D点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.7、C【解析】解:Ax10x2=x8,不符合题意;Bx6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C8、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数【详解】解:众数是一组数据中出
14、现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A【点睛】考查了中位数、众数的概念本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数9、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【详解】解:ab,1=50,4=50,3=120,2+4=120,2=120-50=70故选B【点睛】此题主要考
15、查了平行线的性质,正确得出4的度数是解题关键10、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程详解:设2016年的国内生产总值为1,2017年国内生产总值(GDP)比2016年增长了12%,2017年的国内生产总值为1+12%;2018年比2017年增长7%, 2018年的国内生产总值为(1+12%)(1+7%),这两年GDP年平均增长率为x%, 2018年的国内生产总值也可表示为:,可列方程为:(1+12%)(1+
16、7%)=故选D点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值11、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键12、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出
17、a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】设该船行驶的速度为x海里/时,由已知可得BC3x,AQBC,BAQ60,CAQ45,AB80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC40403x,解方程即可【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45的C处,由题意得:AB80海里,BC3x海里,在直角三角形ABQ中,B
18、AQ60,B906030,AQAB40,BQAQ40,在直角三角形AQC中,CAQ45,CQAQ40,BC40403x,解得:x.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.14、y=x(答案不唯一)【解析】首先设一次函数解析式为:y=kx+b(k0), b取任意值后,把(1,1)代入所设的解析式里,即可得到k的值,进而得到答案.【详解】解:设直线的解析式y=kx+b,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.
19、15、1【解析】因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论【详解】设这些书有x本,由题意得,解得:x=1,答:这些书有1本故答案为:1【点睛】本题考查了比例的性质,正确的列出比例式是解题的关键16、(3,2)【解析】过点P作PDx轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案【详解】过点P作PDx轴于点D,连接OP, A(6,0),PDOA, OD=OA=3,在RtOPD中 OP= OD=3, PD=2 P(3,2) . 故答案为(3,2)【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键17、
20、15或255【解析】如下图,设直线DC与AB相交于点E,RtABC中,B=90,AB=BC,DC/BC,AED=ABC=90,ADE=ACB=BAC=45,AB=AC,AE=AD,又AD=AB,AC=AC,AE=AB=AC=AC,C=30,EAC=60,CAC=60-45=15, 即当DCBC时,旋转角=15;同理,当DCBC时,旋转角=180-45-60=255;综上所述,当旋转角=15或255时,DC/BC.故答案为:15或255.18、10【解析】作FP地面于P,CJPF于J,FQPA交CD于Q,QHCJ于HNT地面于T解直角三角形求出FP、NT即可解决问题【详解】解:作FP地面于P,C
21、JPF于J,FQPA交CD于Q,QHCJ于HNT地面于T由题意QDF,QCH都是等腰直角三角形,四边形FQHJ是矩形,DFDQ30cm,CQCDDQ603030cm,FJQH15cm,ACABBC12525100cm,PF(15100)cm,同法可求:NT(1005),两个转盘的最低点F,N距离地面的高度差为(15100)-(1005)=10故答案为: 10【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)每件销售价为16元时,每天的销售
22、利润最大,最大利润是144元【解析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.由总利润=数量单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2) 根据题意,得: 当时,随x的增大而增大当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.20、【解析】试题分析:x=1时y=1,x=1时,y=3,x=1时,y=5,解得,y=x2+3x+3,ac=13=31,故正确;对称轴为直线,所以,当x时,y
23、的值随x值的增大而减小,故错误;方程为x2+2x+3=1,整理得,x22x3=1,解得x1=1,x2=3,所以,3是方程ax2+(b1)x+c=1的一个根,正确,故正确;1x3时,ax2+(b1)x+c1正确,故正确;综上所述,结论正确的是故答案为【考点】二次函数的性质21、详见解析.【解析】试题分析:由三角形的中位线得出OEAB,进一步利用平行线的性质和等腰三角形性质,找出OCE和ODE相等的线段和角,证得全等得出答案即可试题解析:证明:点E为AC的中点,OC=OB,OEAB,EOC=B,EOD=ODB又ODB=B,EOC=EOD在OCE和ODE中,OC=OD,EOC=EOD, OE=OE,
24、OCEODE(SAS),EDO=ECO=90,DEOD,DE是O的切线点睛:此题考查切线的判定证明的关键是得到OCEODE22、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160x+4000;当50x90时,y=120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:,
25、解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160x+4000=-2(x-40)2+7200,-20,当x=40时,y有最大值,最大值是7200;当50x90时,y=-120x+12000,-1200,y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元23、(1)见解
26、析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AFBC,AF=DC,四边形ADCF是平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形24、(1)证明见解析(2)-1 【解析】(
27、1)先由旋转的性质得AE=AB,AF=AC,EAF=BAC,则EAF+BAF=BAC+BAF,即EAB=FAC,利用AB=AC可得AE=AF,得出ACFABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,ACDE,根据等腰三角形的性质得AEB=ABE,根据平行线得性质得ABE=BAC=45,所以AEB=ABE=45,于是可判断ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BEDE求解【详解】(1)AEF是由ABC绕点A按顺时针方向旋转得到的,AE=AB,AF=AC,EAF=BAC,EAF+BAF=BAC+BAF,即EAB=FAC,在ACF和ABE中,ACFA
28、BEBE=CF.(2)四边形ACDE为菱形,AB=AC=1,DE=AE=AC=AB=1,ACDE,AEB=ABE,ABE=BAC=45,AEB=ABE=45,ABE为等腰直角三角形,BE=AC=,BD=BEDE=考点:1旋转的性质;2勾股定理;3菱形的性质25、(1);(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解【详解】解:(1)选中的恰好是正确答案A的概率为;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,所以选中的恰好是正确答案A,B的概率=【点睛】
29、本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率26、(1)1000 (2)200 (3)54 (4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解试题解析:(1)被调查的同学的人数是40040%=1000(名);(2)剩少量的人数是1000-400
30、-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360=54;(4)200=4000(人)答:校20000名学生一餐浪费的食物可供4000人食用一餐【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小27、(1)证明见解析(2)3【解析】试题分析:(1)根据平行四边形的性质,可证DFEB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.试题解析:(1)四边形ABCD是平行四边形,DCAB,即DFEB又DFBE,四边形DEBF是平行四边形 DEAB,EDB90四边形DEBF是矩形 (2)四边形DEBF是矩形,DEBF4,BDDFDEAB,AD1 DCAB,DFAFABAF平分DAB,DAFFABDAFDFADFAD1BE1ABAEBE312SABCDABBF243