2023届江苏省无锡市江阴市澄东片中考数学押题试卷含解析.doc

上传人:lil****205 文档编号:87838482 上传时间:2023-04-18 格式:DOC 页数:23 大小:1.21MB
返回 下载 相关 举报
2023届江苏省无锡市江阴市澄东片中考数学押题试卷含解析.doc_第1页
第1页 / 共23页
2023届江苏省无锡市江阴市澄东片中考数学押题试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2023届江苏省无锡市江阴市澄东片中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省无锡市江阴市澄东片中考数学押题试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A20%B11%C10%D9.5%2在下列交通标志中,是中心对称图形的是()ABCD3把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的

2、正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是( )A B C D4下面的图形中,既是轴对称图形又是中心对称图形的是( ) A B C D5已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:当的条件下,无论取何值,点是一个定点;当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;的最小值不大于;若,则.其中正确的结论有( )个.A1个B2个C3个D4个6下列关于事件发生可能性的表述,正确的是()A事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B体育彩票的中奖率为10%,则买100张彩票必有10张中奖C

3、在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D掷两枚硬币,朝上的一面是一正面一反面的概率为7如图,A(4,0),B(1,3),以OA、OB为边作OACB,反比例函数(k0)的图象经过点C则下列结论不正确的是()AOACB的面积为12B若y5C将OACB向上平移12个单位长度,点B落在反比例函数的图象上D将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上8下列事件中,必然事件是()A抛掷一枚硬币,正面朝上B打开电视,正在播放广告C体育课上,小刚跑完1000米所用时间为1分钟D袋中只有4个球,且都是红球,任意摸出一球是红球9已知二次

4、函数的图象如图所示,则下列说法正确的是( )A0B0C0D010如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()AADBCBDAC=ECBCDEDAD+BC=AE11如图,在ABC中,CDAB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则DEF的周长是()A9.5B13.5C14.5D1712在RtABC中,C90,那么sinB等于()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_14如图,在平面直

5、角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将CDO以C为旋转中心逆时针旋转90后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_15以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BEAC,垂足为E若双曲线y=(x0)经过点D,则OBBE的值为_16已知关于x的方程有两个不相等的实数根,则m的最大整数值是 17如图,A,B两点被池塘隔开,不能直接测量其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得MN200m,则A,B间的距离为_m18计算:

6、_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.20(6分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动

7、形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中的 , .统计图中,类所对应的扇形的圆心角的度数是 度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.21(6分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做

8、义工时间都在 中的概率22(8分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积23(8分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为(1)求二次函数的解析式;(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标24(10分)如图,ABC

9、是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?25(10分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜请问这样的游戏规则对甲乙双方公平吗?为什么?26(12分)如图,在R

10、t中,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长27(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不

11、必说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为根据题意,得=1解得,(不合题意,舍去)答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.2、C【解析】解:A图形不是中

12、心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C3、C【解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m20,再把m、n的值一一代入检验,看是否满足最后把满足的个数除以掷骰子可能出现的点数的总个数即可解答:解:掷骰子有66=36种情况根据题意有:4n-m20,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:1736=故选C点评:本题考查

13、的是概率的公式和二次函数的图象问题要注意画出图形再进行判断,找出满足条件的点4、B【解析】试题解析:A. 是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形;C.是中心对称图形,但不是轴对称图形;D.是轴对称图形不是中心对称图形;故选B.5、C【解析】利用抛物线两点式方程进行判断;根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;利用顶点坐标公式进行解答;利用两点间的距离公式进行解答【详解】y=ax1+(1-a)x-1=(x-1)(ax+1)则该抛物线恒过点A(1,0)故正确;y=ax1+(1-a)x-1(a0)的图象与x轴有1个交点,=(1-a)1+8a=(a+1)

14、10,a-1该抛物线的对称轴为:x=,无法判定的正负故不一定正确;根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故正确;A(1,0),B(-,0),C(0,-1),当AB=AC时,解得:a=,故正确综上所述,正确的结论有3个故选C【点睛】考查了二次函数与x轴的交点及其性质(1).抛物线是轴对称图形对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,即b=0时,P在y轴上;当= b1-4ac=0时,P在x轴上;(3)

15、.二次项系数a决定抛物线的开口方向和大小;当a0时,抛物线开口向上;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有1个交点;= b1-4ac=0时,抛物线与x轴有1个交点;= b1-4ac0时,函数在x= -b/1a处取得最小值f(-b/1a)=4ac-b1/4a;在x|x-b/1a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b1/4a相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a0).6、C【解析】根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A. 事件:“在地面,向上抛石子后落

16、在地上”,该事件是必然事件,故错误.B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.7、B【解析】先根据平行四边形的性质得到点的坐标,再代入反比例函数(k0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:A(4,0),B(1,3), ,反比例函数(k0)的图象经过点,反比例函数解析式为.OA

17、CB的面积为,正确;当时,故错误;将OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.8、D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,

18、任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.9、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛

19、物线与y轴的交点抛物线与x轴交点的个数确定10、C【解析】利用旋转的性质得BA=BD,BC=BE,ABD=CBE=60,C=E,再通过判断ABD为等边三角形得到AD=AB,BAD=60,则根据平行线的性质可判断ADBC,从而得到DAC=C,于是可判断DAC=E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用CBE=60,由于E的度数不确定,所以不能判定BCDE【详解】ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB的延长线上,BA=BD,BC=BE,ABD=CBE=60,C=E,ABD为等边三角形,AD=AB,BAD=60,BAD=EBC,ADBC,DAC=C,DAC

20、=E,AE=AB+BE,而AD=AB,BE=BC,AD+BC=AE,CBE=60,只有当E=30时,BCDE故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等边三角形的性质11、B【解析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答【详解】在ABC中,CDAB于点D,E,F分别为AC,BC的中点,DE=AC=4.1,DF=BC=4,EF=AB=1,DEF的周长=(AB+BC+AC)=(10+8+9)=13.1故选B【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三

21、边,且等于第三边的一半12、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.二、填空题:(本大题共6个小题,每小题4分,共24分)13、m1【解析】反比例函数的图象在其每个象限内,y随x的增大而减小,0,解得:m1,故答案为m1.14、(4,2)【解析】利用图象旋转和平移可以得到结果.【详解】解:CDO绕点C逆时针旋转90,得到CBD,则BD=OD=2,点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个

22、单位,得到OAD,点D向下平移4个单位故点D坐标为(4,2),故答案为(4,2)【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.15、1【解析】由双曲线y=(x0)经过点D知SODF=k=,由矩形性质知SAOB=2SODF=,据此可得OABE=1,根据OA=OB可得答案【详解】如图,双曲线y=(x0)经过点D,SODF=k=,则SAOB=2SODF=,即OABE=,OABE=1,四边形AB

23、CD是矩形,OA=OB,OBBE=1,故答案为:1【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质16、1【解析】试题分析:关于x的方程有两个不相等的实数根,.m的最大整数值为1考点:1.一元二次方程根的判别式;2.解一元一次不等式17、1【解析】AM=AC,BN=BC,AB是ABC的中位线,AB=MN=1m,故答案为118、5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说

24、明、证明过程或演算步骤19、(1);(2)P(0,6)【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PCAC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.试题解析:令一次函数中,则, 解得:,即点A的坐标为(-4,2) 点A(-4,2)在反比例函数的图象上,k=-42=-8, 反比例函数的表达式为 连接AC,根

25、据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PCAC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值. 设平移后直线于x轴交于点F,则F(6,0)设平移后的直线解析式为,将F(6,0)代入得:b=3直线CF解析式: 令3=,解得:, C(-2,4) A、C两点坐标分别为A(-4,2)、C(-2,4)直线AC的表达式为, 此时,P点坐标为P(0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.20、(1)150、4

26、5、36;(2)28.8;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得【详解】解:(1)接受问卷调查的共有3020%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到

27、必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小21、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数= ,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-185(人),故答案为:5;补图如下:(2)D类:1850100%36%,故答案为:36%;(3)设这5人为 有以下10种情况: 其中,两人都在 的概率是: .22、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别

28、代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将ABC的面积转化为OBC的面积试题解析:()把代入反比例函数表达式,得,解得,反比例函数表达式为,把代入正比例函数,得,解得,正比例函数表达式为()直线由直线向上平移个单位所得,直线的表达式为,由,解得或,在第四象限,连接,23、(1);(2)P点坐标为, ;(3) 或或或【解析】(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面

29、积,根据二次函数的性质可求得其面积的最大值及P点坐标;(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分BQC=90、CBQ=90和BCQ=90三种情况,求解即可.【详解】解:(1)A(-1,0),在上,解得,二次函数的解析式为;(2)在中,令可得,解得或,且,经过、两点的直线为,设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,当时,四边形的面积最大,此时P点坐标为,四边形的最大面积为;(3),对称轴为,可设点坐标为,为直角三角形,有、和三种情况,当时,则有,即,解得或,此时点坐标为或;当时,则有,即,解得,此时点坐标为;当时,则有,即,解得,此时点坐标为;综上可知点的

30、坐标为或或或【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.24、(1)证明见解析;(2)证明见解析;(1)BC=4;【解析】分析:(1)由菱形知D=BEC,由A+D=BEC+AEC=180可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点

31、M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180,又BEC+AEC=180,A=AEC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线

32、交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEFG是C的内接四边形,G+AEF=180,又AEF+BEF=180,G=BEF,EBF=GBA,BEFBGA,即BFBG=BEAB,BF=BCCF=BCAC、BG=BC+CG=BC+AC,BE=CE=AC,(BCAC)(BC+AC)=ABAC,即BC2AC2=ABAC;(1)设AB=5k、AC=1k,BC2AC2=ABAC,BC=2k,连接ED交BC于点M,四边形BDCE是菱形,DE垂直平分BC,则点E、O、M、D共线,在RtDMC中,DC=AC=1k,MC=BC=k,DM=,OM=ODDM=1k,在RtCOM中,

33、由OM2+MC2=OC2得(1k)2+(k)2=12,解得:k=或k=0(舍),BC=2k=4;设OM=d,则MD=1d,MC2=OC2OM2=9d2,BC2=(2MC)2=164d2,AC2=DC2=DM2+CM2=(1d)2+9d2,由(2)得ABAC=BC2AC2=4d2+6d+18=4(d)2+,当d=,即OM=时,ABAC最大,最大值为,DC2=,AC=DC=,AB=,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点25、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解析】试题分

34、析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解试题解析: (1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平考点:游戏公平性;列表法与树状图法26、(1)ADE=90;(2)ABE的周长=1【解析】试题分析:(1)是线段垂直平分线的做法,可得ADE=90(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以ABE的周长为AB+BE+AE=AB+BC=1试题解析:(1)由题意可知MN是线段AC的垂直平分线,ADE=90;(2)在

35、RtABC中,B=90,AB=3,AC=5,BC=4,MN是线段AC的垂直平分线,AE=CE,ABE的周长=AB+(AE+BE)=AB+BC=3+4=1考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长27、(1)见解析;(1)30或150,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90即可;(1)在旋转过程中,OAG成为直角有两种情况:由0增大到90过程中,当OAG=90时,=30,由90增大到180过程中,当OAG=90时,=150;当旋转到A、O、F在一条直线上时,AF的长最大,AF=

36、AO+OF=+1,此时=315【详解】(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90,GAO+DEO=90,AHE=90,即DEAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG=90时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30,OAOD,OAAG,ODAG,DOG=AGO=30,即=30;()由90增大到180过程中,当OAG=90时,同理可求BOG=30,=18030=150.综上所述,当OAG=90时,=30或150.如图3,当旋转到A.O、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45,此时=315.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁