《2023届江西省兴国县达标名校中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省兴国县达标名校中考数学最后冲刺浓缩精华卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于( )A12cm2B15cm2C24cm2D30cm22已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0x11,1x21;a+b0;a0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)14在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_15如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF若AB
3、12,BC5,且ADCD,则EF的长为_16正六边形的每个内角等于_17已知二次函数的图象如图所示,有下列结论:,;,其中正确的结论序号是_18计算:_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)关于x的一元二次方程x2(2m3)x+m2+1=1(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况20(6分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为
4、,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)21(6分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回
5、答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率22(8分)如图,矩形ABCD中,AB4,BC6,E是BC边的中点,点P在线段AD上,过P作PFAE于F,设PAx(1)求证:PFAABE;(2)当点P在线段AD上运动时,设PAx,是否存在实数x,使得以点P,F,E为顶点的三角形也与ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的D与线段AE只有一个公共点时,
6、请直接写出x满足的条件: 23(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 24(10分)如图,ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆
7、时针旋转90后得到的A1B1C125(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?26(12分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点
8、F为OD的延长线上一点且满足OBCOFC,求证:CF为O的切线;若四边形ACFD是平行四边形,求sinBAD的值27(12分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图根据以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名参考
9、答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),侧面积3515(cm2),故选B2、A【解析】如图,且图像与y轴交于点,可知该抛物线的开口向下,即,当时, 故错误由图像可知,当时,故错误,又,故错误;,又,故正确故答案选A.【点睛】本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定3、B【解析】分析:根据轴对称图形的概念求解详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不
10、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形4、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键5、B【解析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案【详解】解:由题意,得a=-4,b=1(a+b)2017=(-1)2017=-1,故选B【点睛】本题考查了关于y轴对称的点
11、的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键6、C【解析】观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且12,所以可得m0时,y的值随x的增大而越来越接近-1,故中结论正确;(4)因为在中,当时,故中结论错误;综上所述,正确的结论是.故答案为:.14、1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案解:设黄球的个数为x个,根据题意得:=2/3解得:x=1黄球的个数为115、【解析】先求出BE的
12、值,作DMAB,DNBC延长线,先证明ADMCDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=, BF=BD=, EF=.【详解】ABC=ADC,A,B,C,D四点共圆,AC为直径,E为AC的中点,E为此圆圆心,F为弦BD中点,EFBD,连接BE,BE=AC=;作DMAB,DNBC延长线,BAD=BCN,在ADM和CDN中,ADMCDN(AAS),AM=CN,DM=DN,DMB=DNC=ABC=90,四边形BNDM为矩形,又DM=DN,矩形BNDM为正方
13、形,BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,12-x=5+x,x=,BN=,BD为正方形BNDM的对角线,BD=BN=,BF=BD=,EF=.故答案为.【点睛】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.16、120【解析】试题解析:六边形的内角和为:(6-2)180=720,正六边形的每个内角为:=120.考点:多边形的内角与外角.17、【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】由图象可知:抛物线开口方
14、向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,故正确;对称轴为,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,故正确故答案为【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定18、x+1【解析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果【详解】解:=.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键三、解答题:(本大
15、题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) ; (2)方程有两个不相等的实根.【解析】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可详解:(1)m是方程的一个实数根,m2-(2m-3)m+m2+1=1,m;(2)=b2-4ac=-12m+5,m1,-12m1=-12m+51此方程有两个不相等的实数根点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键20、【解析】过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD连接FD并延长与BA的延长线交于点H
16、,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.【详解】过点A作,垂足为G则,在中,,由题意,得,连接FD并延长与BA的延长线交于点H 由题意,得在中,,在中,.答:支角钢CD的长为45cm,EF的长为.考点:三角函数的应用21、(1);(2)【解析】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),由上表可知
17、,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.考点:列表法与树状图法;概率公式22、(1)证明见解析;(2)3或(3)或0【解析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解(3)此题首先应针对点的位置分为两种大情况:与AE相切, 与线段只有一个公共点,不一定必须相
18、切,只要保证和线段只有一个公共点即可故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围【详解】(1)证明:矩形ABCD,ADBC. PAF=AEB.又PFAE, PFAABE.(2)情况1,当EFPABE,且PEF=EAB时,则有PEAB四边形ABEP为矩形,PA=EB=3,即x=3.情况2,当PFEABE,且PEF=AEB时,PAF=AEB,PEF=PAF.PE=PA.PFAE,点F为AE的中点, 即 满足条件的x的值为3或(3) 或【点睛】两组角对应相等,两三角形相似.23、(1)详见解析;(1)详见解析;BP=AB【解析】(1)根据要求画出图形即可;(1)连接BD,如图
19、1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45,推出NQC=90,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD
20、 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQACP,DQ=PB,AQN=APC=45,AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴24、(1)A(1,6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:
21、解:(1)如图,A1B1C1为所作,A(1,6);(1)如图,A1B1C1为所作25、(1)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中C对
22、应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.26、 (1)见解析;(2).【解析】(1)连接OC,根据等腰三角形的性质得到OCB=B,OCB=F,根据垂径定理得到OFBC,根据余角的性质得到OCF=90,于是得到结论;(2)过D作DHAB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股
23、定理得到AD=x,于是得到结论【详解】解:(1)连接OC,OC=OB,OCB=B,B=F,OCB=F,D为BC的中点,OFBC,F+FCD=90,OCB+FCD=90,OCF=90,CF为O的切线;(2)过D作DHAB于H,AO=OB,CD=DB,OD=AC,四边形ACFD是平行四边形,DF=AC,设OD=x,AC=DF=2x,OCF=90,CDOF,CD2=ODDF=2x2,CD=x,BD=x,AD=x,OD=x,BD=x,OB=x,DH=x,sinBAD=【点睛】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键27、(
24、1)120,30%;(2)作图见解析;(3)1【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 1215%=120人;36120=30%;(2)12045%=54人,补全统计图如下:(3)1800=1人.考点:条形统计图;扇形统计图;用样本估计总体.