《2023届江苏省宜兴市屺亭中学中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省宜兴市屺亭中学中考数学押题试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知xa=2,xb=3,则x3a2b等于()AB1C17D722如图,扇形AOB 中,半径OA2,AOB120,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )ABCD3下列运算结果正确的是()Ax2+2x23x4B(2x2)38x
2、6Cx2(x3)x5D2x2x2x4下列图形中,是正方体表面展开图的是( )ABCD5已知x1,x2是关于x的方程x2ax2b0的两个实数根,且x1x22,x1x21,则ba的值是( )ABC4D16一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是A平均数B中位数C众数D方差7姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小根据他们的描述,姜老师给出的这个函数表达式可能是()ABCD8下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(a
3、b)2a2b2D(ab)2a2a29对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点10下列说法正确的是( )A“买一张电影票,座位号为偶数”是必然事件B若甲、乙两组数据的方差分别为S甲20.3,S乙20.1,则甲组数据比乙组数据稳定C一组数据2,4,5,5,3,6的众数是5D一组数据2,4,5,5,3,6的平均数是511如图,AB与O相切于点A,BO与O相交于点C,点D是优弧AC上一点,CDA27,则
4、B的大小是( )A27B34C36D5412下列图形中,阴影部分面积最大的是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,P为的边OA上一点,且P点的坐标为(3,4),则sin+cos=_14如图,四边形ABCD是菱形,A60,AB2,扇形EBF的半径为2,圆心角为60,则图中阴影部分的面积是_15如图,O的直径AB=8,C为的中点,P为O上一动点,连接AP、CP,过C作CDCP交AP于点D,点P从B运动到C时,则点D运动的路径长为_16已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;,c是关于x的一元二次方程的两个实数根;其中正确结论是_填写序号17函
5、数,当x0时,y随x的增大而_18有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为yx150,成本为20元/件,月利润为W内(元);若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10a40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润
6、为W外(元)(1)若只在国内销售,当x1000(件)时,y (元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值20(6分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?21(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面
7、积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c222(8分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数
8、关系式,并求出第几天时利润最大,最大利润是多少?23(8分)珠海某企业接到加工“无人船”某零件5000个的任务在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成求技术改进后每天加工零件的数量24(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王
9、6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?25(10分)如图,O是ABC的外接圆,AD是O的直径,BC的延长线于过点A的直线相交于点E,且B=EAC(1)求证:AE是O的切线;(2)过点C作CGAD,垂足为F,与AB交于点G,若AGAB=36,tanB=,求DF的值26(12分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD1米,A27,求跨度AB的长(精确到0.01米).27(12分)化简,再求值:参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小
10、题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】xa=2,xb=3,x3a2b=(xa)3(xb)2=89= ,故选A.2、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=r2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.3、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2x2=2,故此选
11、项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键4、C【解析】利用正方体及其表面展开图的特点解题【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体故选C【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形5、A【解析】根据根与系数的关系和已知x1+x2和x1x2的值,可求a、b的值,再代入求值即可【详解】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x2=2b=1,解得a=2,b=,ba=()2=故选A6、D【解析】解:A原来数据的平均数是2,添加数字2后平均数
12、仍为2,故A与要求不符;B原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D原来数据的方差=,添加数字2后的方差=,故方差发生了变化故选D7、B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=的图象在二、四象限,故选项C错误;y=x的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.8、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=
13、a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键9、A。【解析】对于点A(x1,y1),B(x2,y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。10、C【解析】根据确定性事件、方差、众数以及平均数的定义进行解答即可【详解】解:A、“买一张电影票,座位号为偶数”是随机事件,
14、此选项错误;B、若甲、乙两组数据的方差分别为S甲20.3,S乙20.1,则乙组数据比甲组数据稳定,此选项错误;C、一组数据2,4,5,5,3,6的众数是5,此选项正确;D、一组数据2,4,5,5,3,6的平均数是,此选项错误;故选:C【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件11、C【解析】由切线的性质可知OAB=90,由圆周角定理可知BOA=54,根据直角三角形两锐角互余可知B=36【详解】解:AB
15、与O相切于点A,OABAOAB=90CDA=27,BOA=54B=90-54=36故选C考点:切线的性质12、C【解析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1B、根据反比例函数系数k的几何意义,阴影部分面积和为:C、如图,过点M作MAx轴于点A,过点N作NBx轴于点B,根据反比例函数系数k的几何意义,SOAM=SOAM=,从而阴影部分面积和为梯形MABN的面积:D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:综上所述,阴影部分面积最大的是C故选C二、填空题:(本大题共6个
16、小题,每小题4分,共24分)13、【解析】根据正弦和余弦的概念求解【详解】解:P是的边OA上一点,且P点坐标为(3,4),PB=4,OB=3,OP= =5,故sin= = , cos= ,sin+cos=,故答案为【点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边14、【解析】连接BD,易证DAB是等边三角形,即可求得ABD的高为,再证明ABGDBH,即可得四边形GBHD的面积等于ABD的面积,由图中阴影部分的面积为S扇形EBFSABD即可求解.【详解】如图,连接BD四边形ABCD是菱形,A60,ADC120,1260,DAB是等边三角形,AB2,ABD的高为,扇形
17、BEF的半径为2,圆心角为60,4+560,3+560,34,设AD、BE相交于点G,设BF、DC相交于点H,在ABG和DBH中, ,ABGDBH(ASA),四边形GBHD的面积等于ABD的面积,图中阴影部分的面积是:S扇形EBFSABD2故答案是:【点睛】本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD的面积等于ABD的面积是解题关键15、 【解析】分析:以AC为斜边作等腰直角三角形ACQ,则AQC=90,依据ADC=135,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据ACQ中,AQ=4,即可得到点D运动的路径长为=2详解:如图所示,以AC为斜边作等
18、腰直角三角形ACQ,则AQC=90O的直径为AB,C为的中点,APC=45又CDCP,DCP=90,PDC=45,ADC=135,点D的运动轨迹为以Q为圆心,AQ为半径的又AB=8,C为的中点,AC=4,ACQ中,AQ=4,点D运动的路径长为=2 故答案为2 点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键16、【解析】试题解析:抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),bc0,故正确;a1时,则b、c均小于0,此时b+c0,当a=1时,b+c=0,则与题意矛盾,当0a1时,则b、c均大于0,此时b+c0,故错误;可以转化为:,
19、得x=b或x=c,故正确;b,c是关于x的一元二次方程的两个实数根,abc=a(b+c)=a+(a1)=2a1,当a1时,2a13,当0a1时,12a13,故错误;故答案为17、减小【解析】先根据反比例函数的性质判断出函数的图象所在的象限,再根据反比例函数的性质进行解答即可【详解】解:反比例函数中, 此函数的图象在一、三象限,在每一象限内y随x的增大而减小.故答案为减小.【点睛】考查反比例函数的图象与性质,反比例函数 当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.18、【解析】列举出所有情况,看两个骰子向上的一面的点数和
20、小于6的情况占总情况的多少即可【详解】解:列表得:两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是,故答案为:【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)140;(2)W内x2130x,W外x2 (150a)x;(3)a1【解析】试题分析:(1)将x=1000代入函数关系式求得y,;(2)根据等量关系“利润=销售额
21、成本”“利润=销售额成本附加费”列出函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值试题解析:(1)x=1000,y=1000+150=140;(2)W内(y1)x(x1501)xx2130x W外(150a)xx2x2(150a)x;(3)W内x2130x=(x6500)2+2,由W外x2(150a)x得:W外最大值为:(7505a)2,所以:(7505a)22解得a280或a1经检验,a280不合题意,舍去,a1考点:二次函数的应用20、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍
22、x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)528360320元答:购买5副乒乓球拍和3副羽毛球拍共320元21、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE
23、+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键22、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润销售量”列出函数解析式,由二次函数的性质求得最值即可本题解析:解:(1)若7.5x70,得x4,不符合题意;则5
24、x1070,解得x12.答:工人甲第12天生产的产品数量为70件(2)由函数图象知,当0x4时,P40,当4x14时,设Pkxb,将(4,40)、(14,50)代入,得解得Px36.当0x4时,W(6040)7.5x150x,W随x的增大而增大,当x4时,W最大600;当4600,当x11时,W取得最大值845元答:第11天时,利润最大,最大利润是845元点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题23、技术改进后每天加工1个零件【解析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分
25、式方程,从而得出方程的解并进行检验得出答案详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得, 解得x=100, 经检验x=100是原方程的解,则改进后每天加工1答:技术改进后每天加工1个零件点睛:本题主要考查的是分式方程的应用,属于基础题型根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验24、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0x10与x10,利用待定系数法确定函数关系式求得
26、y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0x10与x10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,a=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,b=;(2)0x10时,设y2=k2x,把(10, 800)代入得10k2=800,解得k2=80,y2=80x,x10,设y2=kx+b,把(10, 800)和(20,1440)代入得解得y2=64x+160(3)设B团有n人,则A团的人数为(50-n)当0n10时80n+48(
27、50-n)=3040,解得n=20(不符合题意舍去)当n10时,解得n=30.则50-n=20人,则A团有20人,B团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.25、(1)见解析;(2)4【解析】分析:(1)欲证明AE是O切线,只要证明OAAE即可;(2)由ACDCFD,可得,想办法求出CD、AD即可解决问题. 详解:(1)证明:连接CDB=D,AD是直径,ACD=90,D+1=90,B+1=90,B=EAC,EAC+1=90,OAAE,AE是O的切线(2)CGADOAAE,CGAE,2=3,2=B,3=B,CAG=CAB,ABCACG,AC2
28、=AGAB=36,AC=6,tanD=tanB=,在RtACD中,tanD=CD=6,AD=6,D=D,ACD=CFD=90,ACDCFD,DF=4,点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型26、AB3.93m【解析】想求得AB长,由等腰三角形的三线合一定理可知AB2AD,求得AD即可,而AD可以利用A的三角函数可以求出【详解】ACBC,D是AB的中点,CDAB,又CD1米,A27,ADCDtan271.96,AB2AD,AB3.93m【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB27、【解析】试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了试题解析:原式=当时,原式=.考点:1.二次根式的化简求值;2.分式的化简求值