《2023届江苏省南通通州区重点中学中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省南通通州区重点中学中考适应性考试数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1下列式子中,与互为有理化因式的是()ABCD2如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )A点AB点BC点CD点D3观察下列图案,是轴对称而不是中心对称的是()ABCD4如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )ABCD5某药品经过两次
2、降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A168(1x)2108B168(1x2)108C168(12x)108D168(1+x)21086如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3B3:2C4:5D4:97计算的值为( )AB-4CD-28某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD9在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范
3、围是( )Ak1Bk0Ck1Dk110的相反数是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在ABC中,ABC20,三边长分别为a,b,c,将ABC沿直线BA翻折,得到ABC1;然后将ABC1沿直线BC1翻折,得到A1BC1;再将A1BC1沿直线A1B翻折,得到A1BC2;,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_(结果用含有a,b,c的式子表示)12如图,直线交于点,与轴负半轴,轴正半轴分别交于点,的延长线相交于点,则的值是_132018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖
4、的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有_万人14PA、PB分别切O于点A、B,PAB=60,点C在O上,则ACB的度数为_15如图,如果两个相似多边形任意一组对应顶点P、P所在的直线都是经过同一点O,且有OP=kOP(k0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知ABC与ABC是关于点O的位似三角形,OA=3OA,则ABC与ABC的周长之比是_.16如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y(k0,x0)的图象经过顶点C、
5、D,若点C的横坐标为5,BE3DE,则k的值为_三、解答题(共8题,共72分)17(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.(1)求一次函数和反比例函数的表达式;(2)观察图象:当时,比较. 18(8分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.(1)求证:.(2)若,求的长.19(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申
6、家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量20(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN21(8分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,一次函数的图象与轴的正半轴交于点求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整图象:当时,写出的取值范围22(10分)解方程: +=123(12分)(14分)如图,在平面直角坐标系中
7、,抛物线y=mx28mx+4m+2(m2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2x1=4,直线ADx轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q(1)求抛物线的解析式;(2)当0t8时,求APC面积的最大值;(3)当t2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若不存在,请说明理由24如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的
8、直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】直接利用有理化因式的定义分析得出答案【详解】()(,)=122,=10,与互为有理化因式的是:,故选B【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式
9、可用平方差公式来进行分步确定.2、B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小故选B3、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形这个旋转点,就叫做对
10、称中心4、B【解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.5、A【解析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1故选A【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题
11、主要解决价格变化前后的平衡关系,列出方程即可6、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心7、C【解析】根据二次根式的运算法则即可求出答案【详解】原式=-3=-2,故选C【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型8、A【解析】作
12、出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.9、A【解析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k的取值范围【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y
13、随x的增大而增大10、B【解析】一个数的相反数就是在这个数前面添上“”号,由此即可求解【详解】解:的相反数是故选:B【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1二、填空题(本大题共6个小题,每小题3分,共18分)11、2a+12b【解析】如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= =,所以图形的周长为:a+c+5b,因为ABC20,所以,翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.12、【解析】连接,根据可得
14、,并且根据圆的半径相等可得OAD、OBE都是等腰三角形,由三角形的内角和,可得C=45,则有是等腰直角三角形,可得 即可求求解【详解】解:如图示,连接,是直径,是等腰直角三角形,【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键13、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用14、60或120【解析】连接OA、OB,根据切线
15、的性质得出OAP的度数,OBP的度数;再根据四边形的内角和是360,求出AOB的度数,有圆周角定理或圆内接四边形的性质,求出ACB的度数即可【详解】解:连接OA、OBPA,PB分别切O于点A,B,OAPA,OBPB;PAO=PBO=90;又APB=60,在四边形AOBP中,AOB=360909060=120, 即当C在D处时,ACB=60在四边形ADBC中,ACB=180ADB=18060=120于是ACB的度数为60或120,故答案为60或120【点睛】本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题15、1:1【解析】分析:根据相似三角形的周长比等于相似比解答详解:ABC与AB
16、C是关于点O的位似三角形,ABCABCOA=1OA,ABC与ABC的周长之比是:OA:OA=1:1故答案为1:1点睛:本题考查的是位似变换的性质,位似变换的性质:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行16、【解析】过点D作DFBC于点F,由菱形的性质可得BCCD,ADBC,可证四边形DEBF是矩形,可得DFBE,DEBF,在RtDFC中,由勾股定理可求DE1,DF3,由反比例函数的性质可求k的值【详解】如图,过点D作DFBC于点F,四边形ABCD是菱形,BCCD,ADBC,DEB90,ADBC,EBC90,且DEB90,DFBC,四边形DEBF是矩形,DFBE,DEBF,点
17、C的横坐标为5,BE3DE,BCCD5,DF3DE,CF5DE,CD2DF2+CF2,259DE2+(5DE)2,DE1,DFBE3,设点C(5,m),点D(1,m+3),反比例函数y图象过点C,D,5m1(m+3),m,点C(5,),k5,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键三、解答题(共8题,共72分)17、(1);(2)【解析】(1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由ODC与BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;(2)以A点为分界点,直接观察函数图象
18、的高低即可知道答案【详解】解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),OD=2,ABx轴于B, ,AB=1,BC=2,OC=4,OB=6,C(4,0),A(6,1)将C点坐标代入y=kx-2得4k-2=0,k=,一次函数解析式为y=x-2;将A点坐标代入反比例函数解析式得m=6,反比例函数解析式为y=;(2)由函数图象可知:当0x6时,y1y2;当x=6时,y1=y2;当x6时,y1y2;【点睛】本题考查了反比例函数与一次函数的交点问题熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握18、(1)证明见解
19、析;(2)【解析】(1)由题意推出再结合,可得BHEBCO.(2)结合BHEBCO ,推出带入数值即可.【详解】(1)证明:为圆的半径,是的中点,,,, , , 又,(2),, ,,得,解得, .【点睛】本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.19、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服
20、的水留到冲厕所试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,用水量的中位数为800升;(2)100%=12.5%答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水10030=3000升20、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩
21、形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.21、(1)点的坐标为;(2);(3)或【解析】(1)点A在反比例函数上,轴,求坐标;(2)梯形面积,求出B点坐标,将点代入 即可;(3)结合图象直接可求解;【详解】解:(1)点在的图像上,轴,点的坐标为;(2)梯形的面积是3,解得,点的坐标为,把点与代入得解得:,一次函数的解析式为(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的
22、另一个交点为E,联立 ,得 点E的坐标为 即 的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键22、-3【解析】试题分析:解得x=3经检验: x=3是原方程的根.原方程的根是x=3 考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.23、(1);(2)12;(3)t=或t=或t=1【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即
23、可;(2)(2)分0t6时和6t8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2t6时和t6时两种情况进行讨论,再根据三角形相似的条件,即可得解试题解析:解:(1)由题意知x1、x2是方程mx28mx+4m+2=0的两根,x1+x2=8,由解得:B(2,0)、C(6,0)则4m16m+4m+2=0,解得:m=,该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,直线AC的解析式为:y=x+3,要构成APC,显然t6,分两种情况讨论:当0t6时,设直线l与AC交点为F,则:F(t,),P(t,),PF=,SAPC=SAPF+SCPF=,此时最大值
24、为:,当6t8时,设直线l与AC交点为M,则:M(t,),P(t,),PM=,SAPC=SAPFSCPF=,当t=8时,取最大值,最大值为:12,综上可知,当0t8时,APC面积的最大值为12;(3)如图,连接AB,则AOB中,AOB=90,AO=3,BO=2,Q(t,3),P(t,),当2t6时,AQ=t,PQ=,若:AOBAQP,则:,即:,t=0(舍),或t=,若AOBPQA,则:,即:,t=0(舍)或t=2(舍),当t6时,AQ=t,PQ=,若:AOBAQP,则:,即:,t=0(舍),或t=,若AOBPQA,则:,即:,t=0(舍)或t=1,t=或t=或t=1考点:二次函数综合题24、
25、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:819bc10,c1,解得b
26、2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP6(m23m)m29m.0m6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的
27、点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP:AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏