《云南省、贵州省2023年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省、贵州省2023年中考数学全真模拟试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )ABC5cosD2如图是由长方体和圆柱组成的几何体,它的俯视图是()ABCD3如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()ABCD4若关于,的二元一次方程组的解也是二元一次方程的解,则的值为ABCD5如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方
3、形AEFG,若 ,则 的度数是 ABCD6九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是ABCD7如图,ABC是等边三角形,点P是三角形内的任意一点,PDAB,PEBC,PFAC,若ABC的周长为12,则PD+PE+PF()A12B8C4
4、D38PM2.5是指大气中直径小于或等于2.5m(1m=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害2.5m用科学记数法可表示为( )ABCD9工人师傅用一张半径为24cm,圆心角为150的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()cmABCD10已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A4b+2cB0C2cD2a+2c二、填空题(本大题共6个小题,每小题3分,共18分)11如图,六边形ABCDEF的六个内角都相等若AB=1,BC=CD=3,DE=2,则这个六边形的
5、周长等于_12如图,点A,B在反比例函数(k0)的图象上,ACx轴,BDx轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且BCE的面积是ADE的面积的2倍,则k的值是_13计算:的结果为_14一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_.15已知关于X的一元二次方程有实数根,则m的取值范围是_16如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF
6、的边长为 . 三、解答题(共8题,共72分)17(8分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45,OC=2,求弦CD的长18(8分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作D
7、FAD交CE于点F,请直接写出线段CF长度的最大值19(8分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜你认为这个游戏公平吗?试说明理由20(8分)已知点E是矩形ABCD的边CD上一点,BFAE于点F,求证ABFEAD.21(8分)如图,在ABC中,AD、AE分别为ABC的中线和角平分线过点C作CHAE于点H,并延长交AB于点F,连接DH,求证:DHBF22(10分)如图,某校一
8、幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD小明在山坡的坡脚A处测得宣传牌底部D的仰角为60,沿山坡向上走到B处测得宣传牌顶部C的仰角为45已知山坡AB的坡度i1:,AB10米,AE15米,求这块宣传牌CD的高度(测角器的高度忽略不计,结果精确到0.1米参考数据:1.414,1.732)23(12分)计算:_24如图,在ABC中,AB=AC,点,在边上,求证:参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】利用所给的角的余弦值求解即可【详解】BC=5米,CBA=,AB=故选D【点睛】本题主要考查学生对坡度、坡角的理解及运用2、A【解析】分析:根据从上边看得到的
9、图形是俯视图,可得答案详解:从上边看外面是正方形,里面是没有圆心的圆,故选A点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图3、C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题【详解】解:由题意可得,y=,当x=40时,y=6,故选C【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键4、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值【详解】解:,得:,即,将代入得:,即,将,代入得:,解得:故选:【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左
10、右两边成立的未知数的值5、A【解析】分析:首先求出AEB,再利用三角形内角和定理求出B,最后利用平行四边形的性质得D=B即可解决问题详解:四边形ABCD是正方形,AEF=90,CEF=15,AEB=180-90-15=75,B=180-BAE-AEB=180-40-75=65,四边形ABCD是平行四边形,D=B=65故选A点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型6、B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系
11、,列方程是关键7、C【解析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可【详解】延长EP、FP分别交AB、BC于G、H,则由PDAB,PEBC,PFAC,可得,四边形PGBD,EPHC是平行四边形,PG=BD,PE=HC,又ABC是等边三角形,又有PFAC,PDAB可得PFG,PDH是等边三角形,PF=PG=BD,PD=DH,又ABC的周长为12,PD+PE+PF=DH+HC+BD=BC=12=4,故选C【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于608、C【解析】试题分析
12、:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数考点:用科学计数法计数9、B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2r=,解得:r=10,故这个圆锥的高为:(cm)故选B点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键10、A【解析】由数轴上点的位置得:ba0|c|a|,a+c0,a2b0,c+2b0,则原式=a+ca+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及
13、合并同类项法则,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110,所以通过适当的向外作延长线,可得到等边三角形,进而求解【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P六边形ABCDEF的六个角都是110,六边形ABCDEF的每一个外角的度数都是60AHF、BGC、DPE、GHP都是等边三角形GC=BC=3,DP=DE=1GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-
14、1=1六边形的周长为1+3+3+1+4+1=2故答案为2【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长是非常完美的解题方法,注意学习并掌握12、【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示BCE的面积是ADE的面积的2倍,E是AB的中点,SABC=2SBCE,SABD=2SADE,SABC=2SABD,且ABC和ABD的高均为BF,AC=2BD,OD=2OCCD=k,点A的坐标为(,3),点B的坐标为(-,-),AC=3,BD=,AB=2AC=6,AF=AC+BD=,CD=k=【点睛】本题考查了反比例函数图象上点的坐标特征、三角形
15、的面积公式以及勾股定理构造直角三角形利用勾股定理巧妙得出k值是解题的关键.13、【解析】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式=3-5=2 点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.14、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案【详解】画树状图得: 共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:=.故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.15、m3且m2【解析】试题解析:一元二次方程有实
16、数根4-4(m-2)0且m-20解得:m3且m2.16、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),点E在抛物线上,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义三、解答题(共8题,共72分)17、(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30,从而求出OAB=90,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2
17、,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的切线,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60,又B=CAB,B=30,OAB=90AB是O的切线(2)作AECD于点EO=60,D=30ACD=45,AC=OC=2,在RtACE中,CE=AE=;D=30,AD=2【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型18、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3
18、).【解析】分析:(1)线段AD绕点A逆时针旋转90得到AE,根据旋转的性质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明的方法与(1)类似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函
19、数即可求得CF的最大值详解:(1)AB=AC,BAC=90,线段AD绕点A逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=BD,CEBD(2)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE
20、=90,AD=AE,NAE=ADM,易证得RtAMDRtENA,NE=AM,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,ENAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MCEN为矩形,DCF=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质19、(1)见解析(2)不
21、公平。理由见解析【解析】解:(1)画树状图得:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432。(2)这个游戏不公平。理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,甲胜的概率为,乙胜的概率为。甲胜的概率乙胜的概率,这个游戏不公平。(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得
22、到答案。20、证明见解析【解析】试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.试题解析:四边形为矩形,于点F,点睛:两组角对应相等,两三角形相似.21、见解析.【解析】先证明AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.【详解】AE为ABC的角平分线,CHAE,ACF是等腰三角形,AFAC,HFCH,AD为ABC的中线,DH是BCF的中位线,DHBF【点睛】本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DHBF,一般三角
23、形中出现这种2倍或关系时,常用中位线的性质解决.22、2.7米【解析】解:作BFDE于点F,BGAE于点G在RtADE中tanADE=,DE=AE tanADE=15山坡AB的坡度i=1:,AB=10BG=5,AG=,EF=BG=5,BF=AG+AE=+15CBF=45CF=BF=+15CD=CF+EFDE=201020101.732=2.682.7答:这块宣传牌CD的高度为2.7米23、1【解析】首先计算负整数指数幂和开平方,再计算减法即可【详解】解:原式931【点睛】此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数)24、见解析【解析】试题分析:证明ABEACD 即可.试题解析:法1:AB=AC,B=C,AD=CE,ADE=AED,ABEACD,BE=CD ,BD=CE,法2:如图,作AFBC于F,AB=AC,BF=CF,AD=AE,DF=EF,BFDF=CFEF,即BD=CE.