《云南省曲靖市第二中学2023年高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖市第二中学2023年高考数学三模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知角的终边与单位圆交于点,则等于( )ABCD2复数(i是虚数单位)在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限3定义,已知函数,则函数的最小值为( )ABCD4已知向量,则( )ABC()D( )5一个几何体的三视图如
2、图所示,则这个几何体的体积为( ) ABCD6若复数满足,则( )ABCD7如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD8定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD9函数与的图象上存在关于直线对称的点,则的取值范围是( )ABCD10若P是的充分不必要条件,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),
3、在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )ABCD12已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,抛物线的准线交轴于点,若,则直线的斜率为A1BCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数的最小值为2,则_14已知为偶函数,当时,则_15定义,已知,若恰好有3个零点,则实数的取值范围是_.16在面积为的中,若点是的中点,点满足,则的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,直线与函数图象相邻两交点的距
4、离为.()求的值;()在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.18(12分)已知函数,函数.()判断函数的单调性;()若时,对任意,不等式恒成立,求实数的最小值.19(12分)已知函数,设为的导数,(1)求,; (2)猜想的表达式,并证明你的结论20(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小
5、于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.21(12分)已知在中,角,的对边分别为,的面积为.(1)求证:;(2)若,求的值.22(10分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.2、B【
6、解析】利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.3、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.4、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,2),(3,1
7、),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.5、B【解析】还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从
8、而分别求解各部分的体积.6、B【解析】由题意得,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.7、B【解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.8、D【解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.
9、在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.9、C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题10、B【解
10、析】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B考点:逻辑命题11、C【解析】根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.12、C【解析】根据抛物线定义,可得,又
11、,所以,所以,设,则,则,所以,所以直线的斜率故选C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值.【详解】根据题意可知,可以发现当或时是分界点,结合函数的解析式,可以判断0不可能,所以只能是是分界点,故,解得,故答案是.【点睛】本题主要考查分段函数的性质,二次函数的性质,函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.14、【解析】由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇
12、偶性,对数函数的运算,考查运算求解能力15、【解析】根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令 ,得或 ,再分当,两种情况讨论求解.【详解】由题意得:当时,在轴上方,且为增函数,无零点,至多有两个零点,不合题意;当时,令,得,令 ,得或 ,如图所示:当时,即时,要有3个零点,则,解得;当时,即时,要有3个零点,则,令,所以在是减函数,又,要使,则须,所以.综上:实数的取值范围是.故答案为:【点睛】本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.16、【解析】由任意
13、三角形面积公式与构建关系表示|AB|AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由ABC的面积为得|AB|AC|sinBAC=,所以|AB|AC|sinBAC=,又,即|AB|AC|cosBAC=,由与的平方和得:|AB|AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()3;().【解析】()函数,利用和差公式和倍角公式,化简即可求得;()由(
14、)知函数,根据点是函数图象的一个对称中心,代入可得,利用余弦定理、基本不等式的性质即可得出.【详解】() 的最大值为最小正周期为 ()由题意及()知,,故故的面积的最大值为.【点睛】本题考查三角函数的和差公式、倍角公式、三角函数的图象与性质、余弦定理、基本不等式的性质,考查理解辨析能力与运算求解能力,属于中档基础题.18、 (1) 故函数在上单调递增,在上单调递减;(2). 【解析】试题分析:()根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性()分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求试题解析:(I)由题意得, .当时,函数在上单调
15、递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增不妨设 ,又函数单调递减,所以原问题等价于:当时,对任意,不等式 恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为19、,;,证明见解析【解析】对函数进行求导,并通过三角恒等变换进行转化求得的表达式,对函数再进行求导并通过三角恒等变换进行转化求得的表达式;根据中,的表达式进行归纳猜想,再利用数学归纳法证明即可.【详
16、解】(1),其中, ,其中, (2)猜想, 下面用数学归纳法证明:当时,成立, 假设时,猜想成立即 当时,当时,猜想成立由对成立【点睛】本题考查导数及其应用、三角恒等变换、归纳与猜想和数学归纳法;考查学生的逻辑推理能力和运算求解能力;熟练掌握用数学归纳法进行证明的步骤是求解本题的关键;属于中档题.20、(1)(2)【解析】(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判
17、断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用
18、,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题21、(1)证明见解析;(2).【解析】(1)利用,利用正弦定理,化简即可证明(2)利用(1),得到当时,得出,得出,然后可得【详解】证明:(1)据题意,得,.又,.解:(2)由(1)求解知,.当时,.又,.【点睛】本题考查正弦与余弦定理的应用,属于基础题22、(1)(2)详见解析【解析】(1)利用可得的递推关系,从而可求其通项.(2)由为等比数列可得,从而可得的通项,利用错位相减法可得的前项和,利用不等式的性质可证.【详解】(1)由题意,得:(t为常数,且),当时,得,得.由,故,故.(2)由,由为等比数列可知:,又,故,化简得到,所以或(舍).所以,则.设的前n项和为.则,相减可得【点睛】数列的通项与前项和 的关系式,我们常利用这个关系式实现与之间的相互转化. 数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.