上海市外国语大学附属上外高中2023年高三二诊模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87837775 上传时间:2023-04-18 格式:DOC 页数:19 大小:1.79MB
返回 下载 相关 举报
上海市外国语大学附属上外高中2023年高三二诊模拟考试数学试卷含解析.doc_第1页
第1页 / 共19页
上海市外国语大学附属上外高中2023年高三二诊模拟考试数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《上海市外国语大学附属上外高中2023年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市外国语大学附属上外高中2023年高三二诊模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,内角的平分线交边于点,则的面积是( )ABCD2若,则下列不等式不能成立的是( )ABCD3已知复数满足,则=( )ABCD4五行学说是华夏民族创造的哲学思想,是华夏文明重要

2、组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )ABCD5设等差数列的前项和为,若,则( )A10B9C8D76是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为( )ABCD7已知各项都为正的等差数列中,若,成等比数列,则( )ABCD8已知定义在上的函数,则,的大小关系为( )ABCD9高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500

3、名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D10010已知,则( )A5BC13D11定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2,则( )ABf(sin3)f(cos3)CDf(2020)f(2019)12阿波罗尼斯(约公元前262190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,不共线时,的面积的最大值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其

4、中是自然对数的底数,若,则实数的值为_.14在中,则_,的面积为_15将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.16曲线在点处的切线方程是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的通项,数列为等比数列,且,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.18(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.19(12分)已知抛物线:y22px(p0)的焦点为

5、F,P是抛物线上一点,且在第一象限,满足(2,2)(1)求抛物线的方程;(2)已知经过点A(3,2)的直线交抛物线于M,N两点,经过定点B(3,6)和M的直线与抛物线交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由20(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.21(12分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.22(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直

6、线l与曲线C交于不同的两点A、B,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.2、B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选

7、项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.3、B【解析】利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.4、A【解析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、

8、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.5、B【解析】根据题意,解得,得到答案.【详解】,解得,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.6、D【解析】首先由题意得,当梯形的外接圆圆心为四棱锥的

9、外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个

10、难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.7、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.8、D【解析】先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.9、D【解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X

11、近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.10、C【解析】先化简复数,再求,最后求即可.【详解】解:,故选:C【点睛】考查复数的运算,是基础题.11、B【解析】根据函数的周期性以及x3,2的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)f(x),得f(x)是周期函数且周期为2,先作出f(x)在x3,2时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R

12、上的图象如下,选项A,所以,选项A错误;选项B,因为,所以,所以f(sin3)f(cos3),即f(sin3)f(cos3),选项B正确;选项C,所以,即,选项C错误;选项D,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.12、A【解析】根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,则,化简得,当点到(轴)距离最大时,的面积最大,面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.二、填空题:

13、本题共4小题,每小题5分,共20分。13、【解析】先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.14、 【解析】利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.【详解】由余弦定理得,则,因此,的面积为.故答案为:;.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考

14、查计算能力,属于基础题.15、【解析】先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.16、【解析】利用导数的几何意义计算即可.【详解】由已知,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的

15、几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据,成等差数列以及为等比数列,通过直接对进行赋值计算出的首项和公比,即可求解出的通项公式;(2)的通项公式符合等差乘以等比的形式,采用错位相减法进行求和.【详解】(1)数列为等比数列,且,成等差数列.设数列的公比为,解得(2),.【点睛】本题考查等差、等比数列的综合以及错位相减法求和的应用,难度一般.判断是否适合使用错位相减法,可根据数列的通项公式是否符合等差乘以等比的形式来判断.18、(1)见解析;(2)

16、见解析【解析】(1)根据,分别是,的中点,即可证明,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证【详解】(1),分别是,的中点平面,平面平面.(2)为正三角形,且D是的中点平面平面,且平面平面,平面平面平面且,平面,且平面.【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题19、(1)y24x;(2)直线NL恒过定点(3,0),理由见解析.【解析】(1)根据抛物线的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.(2)设M(x0,y0),N(x1

17、,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,2),B(3,6)在这两条直线上,分别代入两直线的方程可得y1y212,然后表示直线NL的方程为:yy1(x),代入化简求解.【详解】(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,所以(2)22p(2),即p2+4p120,p0,解得p2,所以抛物线的方程为:y24x;(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y124x1,y224x2,直线MN的斜率kMN,则直线MN的方程为:yy0(x),即y,同理可得直线ML的方程整理可得y,将A(3,2),B(3

18、,6)分别代入,的方程可得,消y0可得y1y212,易知直线kNL,则直线NL的方程为:yy1(x),即yx,故yx,所以y(x+3),因此直线NL恒过定点(3,0)【点睛】本题主要考查了抛物线的方程及直线与抛物线的位置关系,直线过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.20、()()见证明【解析】()求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;()由是减函数,且可得,当时,则,即,两边同除以得,即,从而 ,两边取对数 ,然后再证明恒成立即可,构造函数,通过求导证明即可【详解】解:()的定义域为,.由是减函

19、数得,对任意的,都有恒成立.设.,由知,当时,;当时,在上单调递增,在上单调递减,在时取得最大值.又,对任意的,恒成立,即的最大值为.,解得.()由是减函数,且可得,当时,即.两边同除以得,即.从而 ,所以 .下面证;记,. ,在上单调递增,在上单调递减,而,当时,恒成立,在上单调递减,即时,当时,.,当时,即.综上可得,.【点睛】本题考查了导数与函数的单调性的关系,考查了函数的最值,考查了构造函数的能力,考查了逻辑推理能力与计算求解能力,属于难题,21、(1);(2).【解析】(1)正弦定理的边角转换,以及两角和的正弦公式展开,特殊角的余弦值即可求出答案;(2)构造齐次式,利用正弦定理的边角

20、转换,得到,结合余弦定理 得到【详解】解:(1)由已知,得又,因为 得.(2)又由余弦定理,得【点睛】1.考查学生对正余弦定理的综合应用;2.能处理基本的边角转换问题;3.能利用特殊的三角函数值推特殊角,属于中档题22、(1),(2)【解析】(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2) 由于在直线上,写出直线的标准参数方程参数方程,代入曲线的方程利用参数的几何意义即可得出求解即可.【详解】(1)直线的普通方程为,即,根据极坐标与直角坐标之间的相互转化,而,则,即,故直线l的普通方程为,曲线C的直角坐标方程(2)点在直线l上,且直线的倾斜角为,可设直线的参数方程为:(t为参数),代入到曲线C的方程得,由参数的几何意义知【点睛】熟练掌握极坐标与直角坐标的互化公式、方程思想、直线的参数方程中的参数的几何意义是解题的关键,难度一般.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁