临沂市2023届中考联考数学试卷含解析.doc

上传人:茅**** 文档编号:87837622 上传时间:2023-04-18 格式:DOC 页数:20 大小:1,015.50KB
返回 下载 相关 举报
临沂市2023届中考联考数学试卷含解析.doc_第1页
第1页 / 共20页
临沂市2023届中考联考数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《临沂市2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《临沂市2023届中考联考数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的

2、)1如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D52如图所示几何体的主视图是( )ABCD3如图,PA切O于点A,PO交O于点B,点C是O优弧弧AB上一点,连接AC、BC,如果P=C,O的半径为1,则劣弧弧AB的长为()ABCD4为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A平均数 B中位数 C众数 D方差5(2017鄂州)如图四边形ABCD中,ADBC,BCD=90,AB=BC+AD,DAC=45,E为CD上一点,且BAE=45若CD=4,则ABE的面积为( )

3、A B C D6如图,直角三角形ABC中,C=90,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )A2B+C+2D227在ABC中,C90,AC9,sinB,则AB( )A15B12C9D68对于不为零的两个实数a,b,如果规定:ab,那么函数y2x的图象大致是()ABCD9如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DEAC,EFAB,FDBC,则DEF的面积与ABC的面积之比等于( )A13B23C2D310如图,是的直径,弦,则阴影部分的面积为( )A2BCD11如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,

4、其中直行道为AB,CG,EF,且ABCGEF;弯道为以点O为圆心的一段弧,且,所对的圆心角均为90甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示结合题目信息,下列说法错误的是()A甲车在立交桥上共行驶8sB从F口出比从G口出多行驶40mC甲车从F口出,乙车从G口出D立交桥总长为150m12下列方程有实数根的是( )ABCx+2x1=0D二、填空题:(本大题共6个小题,每小题4分,共24分)13一次函数y=(k3)xk+2的图象经过第一、三、四象限则k的取值范围是_14如图,AB为半圆的直径,且AB=2,半

5、圆绕点B顺时针旋转40,点A旋转到A的位置,则图中阴影部分的面积为_(结果保留)15如图,AD为ABC的外接圆O的直径,若BAD=50,则ACB=_16某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的_(填百分数)17在ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_18廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线

6、上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是_米精确到1米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1求:(1)背水坡AB的长度(1)坝底BC的长度20(6分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E求证:DE是O的切线求DE的长21(6分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CNBE,垂足为M,交AB于点N

7、(1)求证:ABEBCN;(2)若N为AB的中点,求tanABE22(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 23(8分)如图,ABC内接于O,CD是O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且B=2P(1)求证:PA是O的切线;(2)若PD=,求O

8、的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长24(10分)计算:()2+(2)0+|2|25(10分)(1)(2)2+2sin 45(2)解不等式组,并将其解集在如图所示的数轴上表示出来26(12分)已知关于x的一元二次方程x2(2k+1)x+k2+k1(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值27(12分)如果a2+2a-1=0,求代数式的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再根据半径相等得

9、到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键2、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图3、A【解析】利用切线的性质得OAP=90,再利用圆周角定理得到C=O,加上P=C可计算写出O=60,然后根据弧长公式计算劣弧的长【详解】解:PA切O于点A,OAPA,OAP=90,C=O,P

10、=C,O=2P,而O+P=90,O=60,劣弧AB的长=故选:A【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了圆周角定理和弧长公式4、D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差故选D【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FHAB于H,EKAB于K作BTAD于TBCAG,BCF=FDG,

11、BFC=DFG,FC=DF,BCFGDF,BC=DG,BF=FG,AB=BC+AD,AG=AD+DG=AD+BC,AB=AG,BF=FG,BFBG,ABF=G=CBF,FHBA,FCBC,FH=FC,易证FBCFBH,FAHFAD,BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在RtABT中,AB2=BT2+AT2,(x+4)2=42+(4x)2,x=1,BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,42+z2=y2,(5y)2+y2=12+(4z)2,由可得y=,SABE=5

12、=,故选D点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题6、D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -SABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CDC=90,AC=2,AB=4,BC=2阴影部分的面积= S半圆ACD +S半圆BCD -SABC= =.故选:D点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD

13、-SABC是解答本题的关键.7、A【解析】根据三角函数的定义直接求解.【详解】在RtABC中,C90,AC9,解得AB1故选A8、C【解析】先根据规定得出函数y2x的解析式,再利用一次函数与反比例函数的图象性质即可求解【详解】由题意,可得当2x,即x2时,y2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2x,即x2时,y,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0x2,故B错误故选:C【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y2x的解析式是解题的关键9、A【解析】DEAC,EFAB,FDBC,C

14、+EDC=90,FDE+EDC=90,C=FDE,同理可得:B=DFE,A=DEF,DEFCAB,DEF与ABC的面积之比= ,又ABC为正三角形,B=C=A=60EFD是等边三角形,EF=DE=DF,又DEAC,EFAB,FDBC,AEFCDEBFD,BF=AE=CD,AF=BD=EC,在RtDEC中,DE=DCsinC=DC,EC=cosCDC=DC,又DC+BD=BC=AC=DC,DEF与ABC的面积之比等于:故选A点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直

15、角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比10、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可详解:连接OD,CDAB, (垂径定理),故 即可得阴影部分的面积等于扇形OBD的面积,又 (圆周角定理),OC=2,故S扇形OBD= 即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.11、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.3段弧的长度都是:从F口出比从G口

16、出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.12、C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:Ax40,x4+2=0无解;故本选项不符合题意; B0,=1无解,故本选项不符合题意; Cx2+2x1=0,=8=4=120,方程有实数根,故本选项符合题意; D解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意 故选C点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题:(本大

17、题共6个小题,每小题4分,共24分)13、k3【解析】分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围详解:一次函教y=(k3)xk+2的图象经过第一、三、四象限, 解得,k3.故答案是:k3.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:当时,函数的图象经过第一、二、三象限;当时,函数的图象经过第一、三、四象限;当时,函数的图象经过第一、二、四象限;当时,函数的图象经过第二、三、四象限.14、【解析】【分析】根据题意可得出阴影部分的面积等于扇形ABA的面积加上半圆面积再减去半圆面积【详解】S阴影=S扇形ABA+S半圆-S半圆=S扇形ABA=,故答案

18、为.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.15、1【解析】连接BD,如图,根据圆周角定理得到ABD90,则利用互余计算出D1,然后再利用圆周角定理得到ACB的度数【详解】连接BD,如图,AD为ABC的外接圆O的直径,ABD90,D90BAD90501,ACBD1故答案为1【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理16、【解析】用被抽查的100名学生中参加社会实践活动时间在22.5小时之间的学生除以抽查的学生总人数,即可得解【详解】由频数分布直方图知,22.5小时

19、的人数为100(8+24+30+10)=28,则该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的百分比为100%=28%故答案为:28%【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确17、3【解析】以AB为边作等边ABE,由题意可证AECABD,可得BD=CE,根据三角形三边关系,可求EC的最大值,即可求BD的最大值【详解】如图:以AB为边作等边ABE,ACD,ABE是等边三角形,AD=AC,AB=

20、AE=BE=1,EAB=DAC=60o,EAC=BAD,且AE=AB,AD=AC,DABCAE(SAS)BD=CE,若点E,点B,点C不共线时,ECBC+BE;若点E,点B,点C共线时,EC=BC+BEECBC+BE=3,EC的最大值为3,即BD的最大值为3.故答案是:3【点睛】考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键18、 【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有,即,所以两盏警示灯之间的水平距离为:三、解答题:(本大题共9个小题,共

21、78分,解答应写出文字说明、证明过程或演算步骤19、(1)背水坡的长度为米;(1)坝底的长度为116米.【解析】(1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【详解】(1)分别过点、作,垂足分别为点、,根据题意,可知(米),(米) 在中,(米), ,(米). 答:背水坡的长度为米(1)在中, (米),(米) 答:坝底的长度为116米.【点睛】本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.20、 (1)详见解析;(2)4.【解析】试题分析:(1)连结OD

22、,由AD平分BAC,OA=OD,可证得ODA=DAE,由平行线的性质可得ODAE,再由DEAC即可得OEDE,即DE是O的切线;(2)过点O作OFAC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,AD平分BAC,DAE=DAB,OA=OD,ODA=DAO,ODA=DAE,ODAE,DEACOEDEDE是O的切线;(2)过点O作OFAC于点F,AF=CF=3,OF=,OFE=DEF=ODE=90,四边形OFED是矩形,DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.21、(1)证

23、明见解析;(2)【解析】(1)根据正方形的性质得到ABBC,ACBN90,1290,根据垂线和三角形内角和定理得到2390,推出13,根据ASA推出ABEBCN;(2)tanABE,根据已知求出AE与AB的关系即可求得tanABE.【详解】(1)证明:四边形ABCD为正方形AB=BC,A=CBN=90,1+2=90CMBE,2+3=901=3在ABE和BCN中,ABEBCN(ASA);(2)N为AB中点,BN=AB又ABEBCN,AE=BN=AB在RtABE中,tanABE【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,

24、证出ABEBCN是解此题的关键.22、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当CE为矩形的对角线时,以点O为

25、圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45,ODA=45,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i

26、)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键23、(1)证明见解析;(2);(3);【解析】(1)连接OA、AD,如图,利用圆周角定理得到B=ADC,则可证明ADC=2ACP,利用CD为直径得到DAC=90,从而得到ADC=60,C=3

27、0,则AOP=60,于是可证明OAP=90,然后根据切线的判断定理得到结论;(2)利用P=30得到OP=2OA,则,从而得到O的直径;(3)作EHAD于H,如图,由点B等分半圆CD得到BAC=45,则DAE=45,设DH=x,则DE=2x,所以 然后求出x即可得到DE的长【详解】(1)证明:连接OA、AD,如图,B=2P,B=ADC,ADC=2P,AP=AC,P=ACP,ADC=2ACP,CD为直径,DAC=90,ADC=60,C=30,ADO为等边三角形,AOP=60,而P=ACP=30,OAP=90,OAPA,PA是O的切线;(2)解:在RtOAP中,P=30,OP=2OA,O的直径为;(

28、3)解:作EHAD于H,如图,点B等分半圆CD,BAC=45,DAE=45,设DH=x,在RtDHE中,DE=2x,在RtAHE中, 即解得 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理24、2【解析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案【详解】解:原式43+1+222【点睛】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二

29、次根式以及立方根的运算化简,关键要掌握这些知识点25、(1)45;x2,在数轴上表示见解析【解析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集【详解】解:(1)原式=4+223=4+6=45;(2),解得:x,解得:x2,不等式组的解集为:x2,在数轴上表示为:【点睛】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值26、(2)证明见解析;(2)k22,k22【解析】(2)套入数据求出b24ac的值,再与2作比较,由于22,从而证出方程有两个不相等的实数根;(2)将x2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值【详解】(2)证明:b24ac,(2k+2)24(k2+k),4k2+4k+24k24k,22方程有两个不相等的实数根;(2)方程有一个根为2,22(2k+2)+k2+k2,即k2k2,解得:k22,k22【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出b24ac的值;(2)代入x2得出关于k的一元二次方程本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键27、1 【解析】=1.故答案为1.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁