《上海市长宁、嘉定区2022-2023学年高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市长宁、嘉定区2022-2023学年高考数学倒计时模拟卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个
2、数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD2若的展开式中的系数为-45,则实数的值为()AB2CD3设等差数列的前n项和为,若,则( )ABC7D24若复数在复平面内对应的点在第二象限,则实数的取值范围是( )ABCD5设为等差数列的前项和,若,则ABCD6中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD
3、7设递增的等比数列的前n项和为,已知,则( )A9B27C81D8已知集合,则集合的非空子集个数是( )A2B3C7D89i是虚数单位,若,则乘积的值是( )A15B3C3D1510函数,则“的图象关于轴对称”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11已知函数是定义域为的偶函数,且满足,当时,则函数在区间上零点的个数为( )A9B10C18D2012某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数
4、的估计值是( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_14已知,满足约束条件则的最大值为_.15在中,已知,则的最小值是_16正方体的棱长为2, 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦), 为正方体表面上的动点,当弦的长度最大时, 的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较
5、多零件不合格,则需对其余所有零件进行检查根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立若零件的长度满足,则认为该零件是合格的,否则该零件不合格(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由附:若随机变量服从正态分布,则18(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,
6、且.19(12分)已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.()求面积最大值;()证明:直线与斜率之积为定值.20(12分)已知函数,设(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,证明:(注:是的导函数)21(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.22(10分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程
7、;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去
8、计算.2、D【解析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】所以展开式中的系数为,解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.3、B【解析】根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题4、B【解析】复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查
9、了推理能力与计算能力,属于基础题5、C【解析】根据等差数列的性质可得,即,所以,故选C6、B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.7、A【解析】根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在
10、考查学生对这些知识的理解掌握水平.8、C【解析】先确定集合中元素,可得非空子集个数【详解】由题意,共3个元素,其子集个数为,非空子集有7个故选:C【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个9、B【解析】,选B10、B【解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛
11、】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.11、B【解析】由已知可得函数f(x)的周期与对称轴,函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)f (2x),得函数f(x)图象关于x1对称,f(x)为偶函数,取xx+2,可得f(x+2)f(x)f(x),得函数周期为2.又当x0,1时,f(x)x,且f(x)为偶函数,当x1,0时,
12、f(x)x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函数F(x)f(x)在区间上零点的个数为10.故选:B.【点睛】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.12、D【解析】利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考
13、查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:故答案为:【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意14、1【解析】先画出约束条件的可行域,根据平移法判断出最优点,代入目标函数的解析式,易可得到目标函数的最
14、大值【详解】解:由约束条件得如图所示的三角形区域,由于,则,要求的最大值,则求的截距的最小值,显然当平行直线过点时,取得最大值为:.故答案为:1【点睛】本题考查线性规划求最值问题,我们常用几何法求最值.15、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.16、【解析】由弦的长度最大可知为球的直径.由向量的线性运
15、用表示出,即可由范围求得的取值范围.【详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,所以,而所以,即故答案为:.【点睛】本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)需要,见解析【解析】(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再
16、与0比较大小即可判断.【详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,所以为了使损失尽量小,小张需要检查其余所有零件.【点睛】本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.18、(1)(2)证明见解析【解析】(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;(2)利用导数可得,再构造新函数,利用导数求其最值即可得证【详解】(1)函数的定义域为,则(1),(1),故曲线在点,(1)处的切线方程为,又曲线在点,(1)处的切线方程为,;(2)证明:由(1)知,则,令
17、,则,易知在单调递减,又,(1),故存在,使得,且当时,单调递增,当,时,单调递减,由于,(1),(2),故存在,使得,且当时,单调递增,当,时,单调递减,故函数存在唯一的极大值点,且,即,则,令,则,故在上单调递增,由于,故(2),即,【点睛】本题考查导数的几何意义以及利用导数研究函数的单调性,极值及最值,考查推理论证能力,属于中档题19、(1);(2)();()证明见解析.【解析】(1)由,解方程组即可得到答案;(2)()设,则,易得,注意到,利用基本不等式得到的最大值即可得到答案;()设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【详解】(1)设,由,得
18、.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,则,()易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.()记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.20、(1)在上单调递增,在上单调递减(2)见解析【解析】(1)求出导函数,由确定增区间,由确定减区间;(2)求出含有参数的,
19、再求出,由的两根是,得,计算,代入后可得结论【详解】解:,函数的定义域为,(1)当时,由得,由得,故函数在上单调递增,在上单调递减(2)证明:由条件可得,方程的两根分别为,且,可得【点睛】本题考查用导数研究函数的单调性,考查导数的运算、方程根的知识在可导函数中一般由确定增区间,由确定减区间21、(1);(2).【解析】(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.【详解】(1)当时, 令,而是增函数,函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.22、(1)(2)【解析】(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.,.【点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题