云南省曲靖市罗平县2023年中考数学适应性模拟试题含解析.doc

上传人:茅**** 文档编号:87837423 上传时间:2023-04-18 格式:DOC 页数:20 大小:574.50KB
返回 下载 相关 举报
云南省曲靖市罗平县2023年中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共20页
云南省曲靖市罗平县2023年中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《云南省曲靖市罗平县2023年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖市罗平县2023年中考数学适应性模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在数轴上标注了四段范围,如图,则表示的点落在( )A段B段C段D段2一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A2.18106 B2

2、.18105 C21.8106 D21.81053下列各数中,最小的数是( )A4 B3 C0 D24下列说法正确的是()A某工厂质检员检测某批灯泡的使用寿命采用普查法B已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是5下列各数中最小的是( )A0B1CD6 “车辆随机到达一个路口,遇到红灯”这个事件是( )A不可能事件B不确定事件C确定事件D必然事件7的相反数是()AB-CD82017年“智慧天津”

3、建设成效显著,互联网出口带宽达到17200吉比特每秒将17200用科学记数法表示应为()A172102B17.2103C1.72104D0.1721059如图,在中,点D为AC边上一点,则CD的长为( )A1BC2D10下列计算结果正确的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_.12有四张质

4、地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 13如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_14反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=_15如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_16若数据2、3、5、3、8的众数是a,则中位数是b,则ab等于_三、解答题(共8题,共72分)17(8分)已知,如图所

5、示直线y=kx+2(k0)与反比例函数y=(m0)分别交于点P,与y轴、x轴分别交于点A和点B,且cosABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式(2)若AC是PCB的中线,求反比例函数的关系式18(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0)点C、D分别在OB、AB边上,DCOA,CB=2(I)如图,将DCB沿射线CB方向平移,得到DCB当点C平移到OB的中点时,求点D的坐标;(II)如图,若边DC与AB的交点为M,边DB与ABB的角平分线交于点N,当BB多大时,四边形MBND为菱形?并说明理由(III)若将DCB绕点B

6、顺时针旋转,得到DCB,连接AD,边DC的中点为P,连接AP,当AP最大时,求点P的坐标及AD的值(直接写出结果即可)19(8分)在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0MAC120,当线段DE2BE时,直接写出MAC的度数.20(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天

7、(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?21(8分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自

8、点A运动至点E的过程中,线段MN长度的最大值22(10分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是_(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数_(3)请估计全校共征集作品的件数(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取

9、的两名学生性别相同的概率23(12分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率24(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等(1)孔明同学的测试成绩和平

10、时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:121=232;131=319;15=344;191=45 344445,154191,1419,所以应在段上故选C考点:实数与数轴的关系2、A【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2180000的小数点向左移动

11、6位得到2.18,所以2180000用科学记数法表示为2.18106,故选A.【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得4203各数中,最小的数是4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小4、B【解析】分别用方差、全面调查与抽样调查、随机

12、事件及概率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及

13、随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.5、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断【详解】01则最小的数是故选:D【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键6、B【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念

14、.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【解析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将17200用科学记数法表示为1.721

15、故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、C【解析】根据DBC=A,C=C,判定BCDACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】DBC=A,C=C,BCDACB, CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.10、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,

16、故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得: 故答案为 点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键12、【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是

17、奇数)=24=考点:概率的计算13、 【解析】试题解析:共6个数,小于5的有4个,P(小于5)=故答案为14、4【解析】利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.【详解】把点(2,m)代入反比例函数和正比例函数中得,则.【点睛】本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.15、【解析】如图,有5种不同取法;故概率为 .16、2【解析】将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的

18、均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出【详解】2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=12、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1ab=1-1=2故答案为:2【点睛】中位数与众数的定义三、解答题(共8题,共72分)17、(2)y=2x+2;(2)y=【解析】(2)由cosABO,可得到tanABO2,从而可得到k2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值【详解】(2)cosABO=,tanABO=2又OA=2OB=2B(-2,0)代入y=kx+2得

19、k=2一次函数的解析式为y=2x+2(2)当x=0时,y=2,A(0,2)当y=0时,2x+2=0,解得:x=2B(2,0)AC是PCB的中线,P(2,4)m=xy=24=4,反例函数的解析式为y=【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数ktanABO是解题的关键18、()D(3+,3);()当BB=时,四边形MBND是菱形,理由见解析;()P()【解析】()如图中,作DHBC于H首先求出点D坐标,再求出CC的长即可解决问题;()当BB=时,四边形MBND是菱形首先证明四边形MBND是平行四边形,再证明BB=BC即可解决问题;

20、()在ABP中,由三角形三边关系得,APAB+BP,推出当点A,B,P三点共线时,AP最大.【详解】()如图中,作DHBC于H,AOB是等边三角形,DCOA,DCB=AOB=60,CDB=A=60,CDB是等边三角形,CB=2,DHCB,CH=HB=,DH=3,D(6,3),CB=3,CC=23,DD=CC=23,D(3+,3)()当BB=时,四边形MBND是菱形,理由:如图中,ABC是等边三角形,ABO=60,ABB=180ABO=120,BN是ACC的角平分线,NBB=ABB=60=DCB,DCBN,ABBD四边形MBND是平行四边形,MEC=MCE=60,NCC=NCC=60,MCB和N

21、BB是等边三角形,MC=CE,NC=CC,BC=2,四边形MBND是菱形,BN=BM,BB=BC=;()如图连接BP,在ABP中,由三角形三边关系得,APAB+BP,当点A,B,P三点共线时,AP最大,如图中,在DBE中,由P为DE的中点,得APDE,PD=,CP=3,AP=6+3=9,在RtAPD中,由勾股定理得,AD=2此时P(,)【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大19、(1)补全图形如图1所示,见解析

22、,BEC60;(2)BE2DE,见解析;(3)MAC90.【解析】(1)根据轴对称作出图形,先判断出ABDADBy,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出CBD30,进而得出BCD90,即可得出结论;(3)先作出EF2BE,进而判断出EFCE,再判断出CBE90,进而得出BCE30,得出AEC60,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,ADAC,DAECAEx,DEMCEM.ABC是等边三角形,ABAC,BAC60.ABAD.ABDADBy.在ABD中,2x+2y+60180,x+y60.DEMCEMx+y6

23、0.BEC60;(2)BE2DE,证明:ABC是等边三角形,ABBCAC,由对称知,ADAC,CAD2CAM60,ACD是等边三角形,CDAD,ABBCCDAD,四边形ABCD是菱形,且BAD2CAD120,ABC60,ABDDBC30,由(1)知,BEC60,ECB90.BE2CE.CEDE,BE2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明CBD90,画图时,没画在一条直线上)延长EB至F使BEBF,EF2BE,由轴对称得,DECE,DE2BE,CE2BE,EFCE,连接CF,同(1)的方法得,BEC60,CEF是等边三角形,BEBF,CBE90,BCE30,ACE30,

24、AEDAEC,BEC60,AEC60,MAC180AECACE90.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.20、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天

25、所需费用工作时间+乙队每天所需费用工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正

26、确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式21、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程

27、求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x

28、24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+

29、2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.22、(1)抽样调查(2)150(3)180件(4) 【解析】分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查(2)由题意得:所调查的4个班征集到的作品数为:6=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数

30、量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查故答案为抽样调查(2)所调查的4个班征集到的作品数为:6=24件,C班有24(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360=150;故答案为150;(3)平均每个班=6件,估计全校共征集作品630=180件(4)画树状图得:共有20种等可能的结果,两名学生性别相同的有8种情况,恰好选取的两名学生性别相同的概率为点睛:本题考查的是条形统计图和扇形统计图

31、的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)23、(1);(2).【解析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率;(2)只会翻译西

32、班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:807080%=24,2420%=120100,故不可能(3)设平时成绩为满分,即100分,综合成绩为10020%=20,设测试成绩为a分,根据题意可得:20+80%a80,解得:a1答:他的测试成绩应该至少为1分考点:一元一次不等式的应用;二元一次方程组的应用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁