云南省昭通市实验中学2023届高三最后一卷数学试卷含解析.doc

上传人:茅**** 文档编号:87837413 上传时间:2023-04-18 格式:DOC 页数:20 大小:2.30MB
返回 下载 相关 举报
云南省昭通市实验中学2023届高三最后一卷数学试卷含解析.doc_第1页
第1页 / 共20页
云南省昭通市实验中学2023届高三最后一卷数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《云南省昭通市实验中学2023届高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省昭通市实验中学2023届高三最后一卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则的虚部是( )ABCD2某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指19

2、90年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多3已知,则不等式的解集是( )ABCD4已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )ABCD5已知函,则的最小值为( )AB1C0D6已知圆与抛物线的准线相切,则的值为()A1B2CD47已知为定义在上的偶函数,当时,则( )ABCD8台球是一

3、项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cmEF=40cmFC=30cm,AEF=CFE=60,则该正方形的边长为( )A50cmB40cmC50cmD20cm9已知正项等比数列满足,若存在两项,使得,则的最小值为( ).A16BC5D410空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂

4、足之间的距离叫做这个点到这个平面的距离已知平面,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是( )AB3CD11我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”如图就是一重卦在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )ABCD12在中,已知,为线段上的一点,且,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则最小值为_14已知中,点是边的中点,的面积为,则线段的取值范围是_.15已知,且,则的最小值是_.16

5、在四棱锥中,是边长为的正三角形,为矩形,.若四棱锥的顶点均在球的球面上,则球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值18(12分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.19(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.20(12分)设函数(1)若,求函数的值域;(2)设为的三个内角,若,求的值;21(12分)对于正整数,如果个整数满足,且,则称数组为的一个“正整

6、数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.()写出整数4的所有“正整数分拆”;()对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;()对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)22(10分)如图所示,在四棱锥中,平面,底面ABCD满足ADBC,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每

7、小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.2、D【解析】根据两个图形的数据进行观察比较,即可判断各选项的真假【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状

8、图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.3、A【解析】构造函数,通过分析的单调性和对称性,求得不等式的解集.【详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称. 不等式等价于,等价于,注意到,结合图像关于对称和

9、单调递增可知.所以不等式的解集是.故选:A【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.4、B【解析】设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离心率的计算,解答的关键就是得出、的等量关系,考查计算能力,属于中等题.5、B【解析】,利用整体换元法求最小值.【详解】由已知,又,故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍

10、角公式的应用,是一道中档题.6、B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!7、D【解析】判断,利用函数的奇偶性代入计算得到答案.【详解】,故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.8、D【解析】过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.【详解】过点做正方形边的垂线,如图,设,则,则,因为,则,整理化简得,又,得 ,.即该正方形的边长为.故选:D.【点睛】本题考查直角三角形中的

11、边角关系,关键是要构造直角三角形,是中档题.9、D【解析】由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.10、D【解析】建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得到,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值

12、设,则,化简得:,则,解得:,即点的轨迹上的点到的距离的最小值是.故选:.【点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.11、C【解析】利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件

13、概率和为1的方法求解事件概率的方法.属于基础题.12、A【解析】在中,设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最

14、值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误14、【解析】设,利用正弦定理,根据,得到,再利用余弦定理得,平方相加得:,转化为

15、有解问题求解.【详解】设,所以, 即由余弦定理得,即 ,平方相加得:,即 ,令,设 ,在上有解,所以 ,解得,即 ,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.15、8【解析】由整体代入法利用基本不等式即可求得最小值.【详解】,当且仅当时等号成立.故的最小值为8,故答案为:8.【点睛】本题考查基本不等式求和的最小值,整体代入法,属于基础题.16、【解析】做 中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而

16、可求球的半径,进而能求出球的表面积.【详解】解:如图做 中点,的中点,连接 ,由题意知,则 设的外接圆圆心为,则在直线上且 设长方形的外接圆圆心为,则在上且.设外接球的球心为 在 中,由余弦定理可知,.在平面中,以 为坐标原点,以 所在直线为 轴,以过点垂直于 轴的直线为 轴,如图建立坐标系,由题意知,在平面中且 设 ,则,因为,所以 解得.则 所以球的表面积为.故答案为: .【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与

17、各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析 (2)的最小值为【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增 (2)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当时,设,则,所以,设,则,所以

18、函数在上单调递减,且,所以存在,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为18、(1);(2)【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去), 所以,故.(2),考点:

19、等差数列的通项公式;数列的求和.19、(1)(2)【解析】(1)因为,所以,由余弦定理得,化简得, 可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号). 由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.20、(1)(2)【解析】(1)将,利用三角恒等变换转化为:,再根据正弦函数的性质求解,(2)根据,得,又为的内角,得到,再根据,利用两角和与差的余弦公式求解,【详解】(1),即的值域为;(2)由,得,又为的内角,所以,又因为在中,所以,所以.【点睛】本题主要考查三角恒等变换和三角函数的性质,还考查了运算求解的能力,属于中档题,

20、21、 () ,;() 为偶数时,为奇数时,;()证明见解析,【解析】()根据题意直接写出答案.()讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.() 讨论当为奇数时,至少存在一个全为1的拆分,故,当为偶数时, 根据对应关系得到,再计算,得到答案.【详解】()整数4的所有“正整数分拆”为:,.()当为偶数时,时,最大为;当为奇数时,时,最大为;综上所述:为偶数,最大为,为奇数时,最大为.()当为奇数时,至少存在一个全为1的拆分,故;当为偶数时,设是每个数均为偶数的“正整数分拆”,则它至少对应了和的均为奇数的“正整数分拆”,故.综上所述:.当时,偶数“正整数分拆”为,奇数“正整数分拆”为

21、,;当时,偶数“正整数分拆”为,奇数“正整数分拆”为,故;当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出一项各项均为的“正整数分拆”,故.综上所述:使成立的为:或.【点睛】本土考查了数列的新定义问题,意在考查学生的计算能力和综合应用能力.22、(1)证明见解析 (2) (3)【解析】(1)因为底面ABCD为梯形,且,所以四边形BCDE为平行四边形,则BECD,又平面,平面,所以平面, 又因为H为线段BE上的动点,的面积是定值,从而三棱锥的体积是定值. (2)因为平面,所以,结合BECD,所以,又因为,且E为AD的中点,所以四边形ABCE为正方形,所以,结合,则平面,连接,则, 因为平面,所以,因为,所以是等腰直角三角形,O为斜边AC上的中点,所以,且,所以平面,所以PO是四棱锥的高,又因为梯形ABCD的面积为,在中,所以.(3)以O为坐标原点,建立空间直角坐标系,如图所示,则B(,0,0),C(0,0),D(,0),P(0,0,),则,设平面PBD的法向量为,则即则,令,得到, 设BC与平面PBD所成的角为,则,所以,所以直线BC与平面PBD所成角的余弦值为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁