东省济宁市金乡县市级名校2022-2023学年中考适应性考试数学试题含解析.doc

上传人:茅**** 文档编号:87837403 上传时间:2023-04-18 格式:DOC 页数:17 大小:869KB
返回 下载 相关 举报
东省济宁市金乡县市级名校2022-2023学年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共17页
东省济宁市金乡县市级名校2022-2023学年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《东省济宁市金乡县市级名校2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《东省济宁市金乡县市级名校2022-2023学年中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1二次函数的图象如图所示,则下列各式中错误的是( )Aabc0Ba+b+c0Ca+cbD2a+b=02如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:ACB;乙的路线为:ADEFB,其中E为AB的中点;丙的路线

2、为:AIJKB,其中J在AB上,且AJJB若符号表示直线前进,则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A甲=乙=丙B甲乙丙C乙丙甲D丙乙甲3如图,在中,点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结给出以下四个结论:;点是的中点;,其中正确的个数是( )A4B3C2D14如图是一个由5个相同的正方体组成的立体图形,它的主视图是()ABCD5小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A圆锥形冰淇淋纸套的底面半径为4cmB圆锥形冰淇淋纸套的底面半径为6cmC圆锥形冰淇淋纸套的高为D圆锥形冰

3、淇淋纸套的高为6下列实数0,其中,无理数共有()A1个B2个C3个D4个7如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x-2,那么符合条件的所有整数a的积是 ( )A-3B0C3D98如图,BCDE,若A=35,E=60,则C等于()A60B35C25D209如图,已知直线AD是O的切线,点A为切点,OD交O于点B,点C在O上,且ODA=36,则ACB的度数为()A54 B36 C30 D2710如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )A

4、4B3CD二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,已知点A(4,0)、B(0,3),对AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、,则第(5)个三角形的直角顶点的坐标是_,第(2018)个三角形的直角顶点的坐标是_12如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_13因式分解:mn(nm)n(mn)=_14如图,已知ABCD,F为CD上一点,EFD=60,AEC=2CEF,若6BAE15,C的度数为整数,则C的度数为_15如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其

5、中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_16因式分解:a2b-4ab+4b=_17分解因式:2x2-8x+8=_.三、解答题(共7小题,满分69分)18(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,每天可销售_ 件,每件盈利_ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元要想平均每天赢利2000元,可能吗?请说明理由1

6、9(5分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,指出点P、Q各位于哪个象限?并简要说明理由20(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?21(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所

7、有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x0)元,让利后的购物金额为y元(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由22(10分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图请根据图中提供的信息,解答下列问题:此次抽样调查

8、中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见23(12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?24(14

9、分)如图1,在RtABC中,ABC=90,BA=BC,直线MN是过点A的直线CDMN于点D,连接BD(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系经过观察思考,小明出一种思路:如图1,过点B作BEBD,交MN于点E,进而得出:DC+AD=BD(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当ABD面积取得最大值时,若CD长为1,请直接写BD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据二次函数的图象与性质逐一判断即可【详解】

10、解:由图象可知抛物线开口向上,对称轴为,故D正确,又抛物线与y轴交于y轴的负半轴,故A正确;当x=1时,即,故B错误;当x=-1时,即,故C正确,故答案为:B【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质2、A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似而且图2三角形全等,图3三角形相似详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE AE=BE=AB,AD=EF=AC,DE=BE=BC,甲=乙 图3与图1中,三个三角形相似,所以 = A

11、J+BJ=AB,AI+JK=AC,IJ+BK=BC, 甲=丙甲=乙=丙 故选A 点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系3、C【解析】用特殊值法,设出等腰直角三角形直角边的长,证明CDBBDE,求出相关线段的长;易证GABDBC,求出相关线段的长;再证AGBC,求出相关线段的长,最后求出ABC和BDF的面积,即可作出选择【详解】解:由题意知,ABC是等腰直角三角形,设ABBC2,则AC2,点D是AB的中点,ADBD1,在RtDBC中,DC,(勾股定理)BGCD,DEBABC90,又CDBBDE,CDBBDE,DBEDCB, ,即DE ,B

12、E,在GAB和DBC中,GABDBC(ASA)AGDB1,BGCD,GAB+ABC180,AGBC,AGFCBF,且有ABBC,故正确,GB,AC2,AF,故正确,GF,FEBGGFBE,故错误,SABCABAC2,SBDFBFDE,故正确故选B【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键4、A【解析】画出从正面看到的图形即可得到它的主视图【详解】这个几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图5、C【解析】根据圆锥的

13、底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高【详解】解:半径为12cm,圆心角为的扇形弧长是:,设圆锥的底面半径是rcm,则,解得:即这个圆锥形冰淇淋纸套的底面半径是2cm圆锥形冰淇淋纸套的高为故选:C【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键6、B【解析】根据无理数的概念可判断出无理数的个数【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方

14、才是无理数,无限不循环小数为无理数7、D【解析】解:,由得:x2a+4,由得:x2,由不等式组的解集为x2,得到2a+42,即a3,分式方程去分母得:a3x3=1x,把a=3代入整式方程得:3x6=1x,即,符合题意;把a=2代入整式方程得:3x5=1x,即x=3,不合题意;把a=1代入整式方程得:3x4=1x,即,符合题意;把a=0代入整式方程得:3x3=1x,即x=2,不合题意;把a=1代入整式方程得:3x2=1x,即,符合题意;把a=2代入整式方程得:3x1=1x,即x=1,不合题意;把a=3代入整式方程得:3x=1x,即,符合题意;把a=4代入整式方程得:3x+1=1x,即x=0,不合

15、题意,符合条件的整数a取值为3;1;1;3,之积为1故选D8、C【解析】先根据平行线的性质得出CBE=E=60,再根据三角形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60,A=35,C+A=CBE,C=CBEC=6035=25,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.9、D【解析】解:AD为圆O的切线,ADOA,即OAD=90,ODA=36,AOD=54,AOD与ACB都对,ACB=AOD=27故选D10、C【解析】设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可【详解】设I的边长为

16、x根据题意有 解得或(舍去)故选:C【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、(16,) (8068,) 【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】点A(4,0),B(0,3),OA=4,OB=3,AB=5,第(2)个三角形的直角顶点的坐标是(4,);53=1余2,第(5)个三角形的直角顶点的坐标是(1

17、6,),20183=672余2,第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,第(2018)个三角形的直角顶点的坐标是(8068,)故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.12、【解析】由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得AOB=45,再根据弧长公式计算即可【详解】A(1,1),OA=,点A在第一象限的角平分线上,以点O为旋转中心,将点A逆时针旋转到点B的位置,AOB=45,的长为=,故答案为:【点睛】本题考查坐标与

18、图形变化旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及AOB=45也是解题的关键13、【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).14、36或37【解析】分析:先过E作EGAB,根据平行线的性质可得AEF=BAE+DFE,再设CEF=x,则AEC=2x,根据6BAE15,即可得到63x-6015,解得22x25,进而得到C的度数详解:如图,过E作EGAB,ABCD,GECD,BAE=AEG,DFE=GEF,AEF=BAE+DFE,设CEF=x,则AEC=2x,x+2x=BAE+6

19、0,BAE=3x-60,又6BAE15,63x-6015,解得22x25,又DFE是CEF的外角,C的度数为整数,C=60-23=37或C=60-24=36,故答案为:36或37点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等15、 【解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明DGFDAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可【详解】四边形ABCD、CEFG均为正方形,CD=AD=3,CG=CE=5,DG=2,在RtDGF中, DF=,FDG+GDI=90,GDI

20、+IDA=90,FDG=IDA又DAI=DGF,DGFDAI,即,解得:DI=,矩形DFHI的面积是=DFDI=,故答案为:【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键16、【解析】先提公因式b,然后再运用完全平方公式进行分解即可.【详解】a2b4ab+4b =b(a24a+4)=b(a2)2,故答案为b(a2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.17、2(x-2)2【解析】先运用提公因式法,再运用完全平方公式.【详解】:2x2-8x+8=. 故答案为

21、2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.三、解答题(共7小题,满分69分)18、(1)(20+2x),(40x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元【解析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价进价降价,列式即可;(2)、根据总利润=单件利润数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x),(40-x);(2)、根据题

22、意可得:(20+2x)(40x)=1200,解得:即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40x)=2000, , 此方程无解, 不可能盈利2000元【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型解决这个问题的关键就是要根据题意列出方程19、(1);(2)P在第二象限,Q在第三象限【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(2,),把B(2,)代入中,得到k=3,反比例函数的解析式为(2)结论:P在第二象限,Q在第三象限理由:

23、k=30,反比例函数y在每个象限y随x的增大而增大,P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1x2时,y1y2,P、Q在不同的象限,P在第二象限,Q在第三象限点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型20、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时【解析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解得:t=2.1,经检验,t=2

24、.1是原分式方程的解,且符合题意,1.4t=3.1答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.21、(1)y1=0.85x,y2=0.75x+50 (x200),y2=x (0x200);(2)x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【解析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x, 乙商场写出y关于x

25、的函数解析式y2=200+(x200)0.75=0.75x+50(x200),即y2=x(0x200);(2)由y1y2,得0.85x0.75x+50,解得x500,即当x500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1y2,得0.85x0.75x+500,解得x500,即当x500时,到甲商场购物会更省钱;综上所述:x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【点睛】本题考查了一次函数的应用,分类讨论是解题关键22、200名;见解析;;(4)375.【解

26、析】根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见【详解】解:,答:此次抽样调查中,共调查了200名学生;反对的人数为:,补全的条形统计图如右图所示;扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;(4),答:该校1500名学生中有375名学生持“无所谓”意见【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题

27、意,找出所求问题需要的条件,利用数形结合的思想解答23、 (1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数骑自行车的百分比得出人数.试题解析:(1)、114%20%40%=26%; 2040%=50;骑自行车人数:5020137=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:150020%=300(名)答:该校骑自行车上

28、学的学生有300名考点:统计图24、(1);(2)ADDC=BD;(3)BD=AD=+1【解析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BEBD,交MN于点EAD交BC于O,证明,得到, 根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,AE=CD,BE=BD,CD+AD=AD+AE=DE,是等腰直角三角形,DE=BD,DC+AD=BD,故答案为(2)证明:如图,过点B作BEBD,交MN于点EAD交BC于O,又,为等腰直角三角形,(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大此时DGAB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁