《云南省昭通市绥江县一中2022-2023学年高考适应性考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省昭通市绥江县一中2022-2023学年高考适应性考试数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD2正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )ABCD3在展开式中的常数项为A1B2C3D74已知函数若对区间内的任意实数,都有,则实数的取值范围是( )ABCD5若函数(其中,图象的一个对称中心为,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象( )A向右平移个单位长度B向左平移个单位长度C向左平移个单位长度D向右平移个单位长度6算数
3、书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )ABCD7已知复数满足,其中为虚数单位,则( )ABCD8已知复数,为的共轭复数,则( )ABCD9地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就
4、突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A截止到2015年中国累计装机容量达到峰值B10年来全球新增装机容量连年攀升C10年来中国新增装机容量平均超过D截止到2015年中国累计装机容量在全球累计装机容量中占比超过10设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD11已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD12已知等差数列的前项和为,
5、若,则数列的公差为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13内角,的对边分别为,若,则_14的展开式中项的系数为_15已知正方体棱长为2,点是上底面内一动点,若三棱锥的外接球表面积恰为,则此时点构成的图形面积为_.16已知,是平面向量,是单位向量.若,且,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知四棱锥中,底面为等腰梯形,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.18(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数
6、t的取值范围,并证明.19(12分)已知函数(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性20(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:21(12分)在中,角所对的边分别为,的面积.(1)求角C;(2)求周长的取值范围.22(10分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所
7、以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.2、D【解析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即60,由底面边长为3得,正三棱锥外接球球心必在上,设球半径为,则由得,解得,故选:D【点睛】本题考查球体积,考查正三棱锥与外接球的关系掌握正棱锥性质是解题关键3、D【解析】求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点
8、睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。4、C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得. 当a1时,所以函数f(x)在单调递减, 因为对区间内的任意实数,都有, 所以, 所以 故a1,与a1矛盾,故a1矛盾. 当1ae时,函数f(x)在0,lna单调递增,在(lna,1单调递减. 所以 因为对区间内的任意实数,都有, 所以, 所以 即 令, 所以 所以函数g(a)在(1,e)上单调递减, 所以, 所以当1ae时,满足题意. 当a时
9、,函数f(x)在(0,1)单调递增, 因为对区间内的任意实数,都有, 所以, 故1+1, 所以 故综上所述,a.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.5、B【解析】由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论【详解】根据已知函数其中,的图象过点,可得,解得:再根据五点法作图可得,可得:,可
10、得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B【点睛】本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题6、C【解析】将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.7、A【解析】先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.8、C【解析】求出,直接由复数的代数形
11、式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.9、D【解析】先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算
12、,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.10、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式
13、确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.11、D【解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算
14、,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.12、D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,故,故,故,故选:D【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,即,14、40【解析】根据二项定理展开式,求得r的值,进而求得系数【详解】根据二项定理展开式的通项式得 所以 ,解得 所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题15、.【解析】设三棱锥的外接球为球,分别取、的中点、,先确定球心在线段和中点的连
15、线上,先求出球的半径的值,然后利用勾股定理求出的值,于是得出,再利用勾股定理求出点在上底面轨迹圆的半径长,最后利用圆的面积公式可求出答案【详解】如图所示,设三棱锥的外接球为球,分别取、的中点、,则点在线段上,由于正方体的棱长为2,则的外接圆的半径为,设球的半径为,则,解得.所以,则而点在上底面所形成的轨迹是以为圆心的圆,由于,所以,因此,点所构成的图形的面积为.【点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.16、【解析】先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解【详解】由是单位向量若,设,则,又,则,则,则,又,所以,(当或时取
16、等)即的取值范围是,故答案为:,【点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案【详解】(1)证明:在等腰梯形,易得 在中,则有,故,又平面,平面,即平面,故平面丄平面.(2)在梯形中,设, ,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,设平
17、面的法向量为,由得,取,得,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题18、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增
18、区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,即成立,即成立.【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.19、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递
19、减.【解析】(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【详解】(1)当时,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是.当时,所以当时,;当时,所以在上单调递增,在上单调递减;当时,所以当和时,;当时,所以在和上单调递增,在上单调递减;当时,所以在上恒成立.所以在上单调递增;当时,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【点睛】本题主要考查
20、了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.20、(1)递减区间为(-1,0),递增区间为(2)见解析【解析】(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,当时,单调递减,当时,单调递增,此时
21、是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,因此要证当时,只需证明,即令,则,在是单调递增,而,存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,故,从而,即,结论成立.【点睛】本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.21、()()【解析】()由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;()由,并结合正弦定理可得到,利用,可得到,进而可求出周长的范围【详解】解:()由可知,.由正弦定理得.由余弦定理得,.()由()知,.的周长为 .,,的周长的取值范围
22、为.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题22、(1) (2)【解析】(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,单调递增,当, 单调递减,作出函数图象如下所示,观察可知,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围