《云南省玉溪市元江一中2023年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省玉溪市元江一中2023年高考全国统考预测密卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数,则的共轭复数在复平面对应的点位于( )A第一象限B第二象限C第三象限D第四象限2设复数满足为虚数单位),则( )ABCD3已知的内角、的对边分别为、,且,为边上的中线,若,则的面积
2、为( )ABCD4复数,若复数在复平面内对应的点关于虚轴对称,则等于( )ABCD5已知复数是正实数,则实数的值为( )ABCD6已知平面,直线满足,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条件7设i是虚数单位,若复数是纯虚数,则a的值为( )AB3C1D8设M是边BC上任意一点,N为AM的中点,若,则的值为( )A1BCD9若函数(其中,图象的一个对称中心为,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象( )A向右平移个单位长度B向左平移个单位长度C向左平移个单位长度D向右平移个单位长度10函数,的部分图象如图所示
3、,则函数表达式为( )ABCD11已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )AB2CD312下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )A16B17C18D19二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和且,设,则的值等于_ .14过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为_15已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的
4、值为_16(5分)函数的定义域是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.18(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.19(12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.20(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半
5、轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.21(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列定义随机变量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X来衡量家长对小孩饮食习惯的了解程度(1)若参与游戏的家长对小孩
6、的饮食习惯完全不了解()求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;()求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否了解,说明理由22(10分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据复数的运算,求得复数,再利用复数的表示,即可得到复数对应的点
7、,得到答案详解:由题意,复数,则所以复数在复平面内对应的点的坐标为,位于复平面内的第三象限,故选C点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数是解答的关键,着重考查了推理与运算能力2、B【解析】易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.3、B【解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的
8、应用,其中根据中线作出平行四边形是关键,是中档题.4、A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.5、C【解析】将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.6、A【解析】,是相交平面,直线平面,则“” “”,反之,直线满足,则或/或平面,即可判断出结论【详解】解:已知直线平面,则“” “”,反之,直线满足,则或/或平面,
9、“”是“”的充分不必要条件故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力7、D【解析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.8、B【解析】设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.9、B【解析】由函数的图象的顶点坐标求出
10、A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论【详解】根据已知函数其中,的图象过点,可得,解得:再根据五点法作图可得,可得:,可得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B【点睛】本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题10、A【解析】根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,解得,因为函数过点,所以,即,解得,因为,所以,.故选:A【点睛】本题考查根据图像求正弦型函数的解
11、析式,三角函数诱导公式,属于基础题.11、B【解析】过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,由抛物线定义知:,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.12、B【解析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最
12、小整数.若输出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】根据题意,当时,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,又,解得,当时,由,所以,即,故数列是以为首项,为公比的等比数列,故,又,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.14、.【解析】先求圆的半径, 四边形的最小面积,转化为的最小值为,求出切
13、线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率【详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为【点睛】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.15、-1【解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时
14、取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有无穷多,故a0不符合条件;综上所述,a1故答案为:1【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.16、【解析】要使函数有意义,则,即,解得,故函数的定义域是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;(2)根据,选择,所以当
15、的面积取得最大值时,最大,结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长【详解】(1)由,得,即.因为,所以.由,得.(2)因为,所以,当且仅当时,等号成立.因为的面积.所以当时,的面积取得最大值,此时,则,所以的周长为.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力18、(1);(2)证明见解析.【解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证
16、出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.19、(1)(2)直线l的斜率为或【解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦
17、达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.20、(1) ;(2).【解析】(1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定理即可求得的长;(2)将的极坐标化为直角坐标,将直线方程与圆的方程联立,求得直线与圆的两个交点坐标,由中点坐标公式求得的坐标,再根据两点间距离公式即可求得.【详解】(1)直线的参数方程为(为参数),化为直角坐标方程为
18、,即直线与曲线交于两点.则圆心坐标为,半径为1,则由点到直线距离公式可知,所以.(2)点的极坐标为,化为直角坐标可得,直线的方程与曲线的方程联立,化简可得,解得,所以两点坐标为,所以,由两点间距离公式可得.【点睛】本题考查了参数方程与普通方程转化,极坐标与直角坐标的转化,点到直线距离公式应用,两点间距离公式的应用,直线与圆交点坐标求法,属于基础题.21、(1)()()分布表见解析;(2)理由见解析【解析】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他
19、们在一轮游戏中,对四种食物排出的序号完全不同的概率(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X4)=P(X=0)+ P(X=2)=,三轮游戏结果都满足“X4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:
20、2143,2341,2413,3142,3412,3421,4123,4312,4321,家长的排序与对应位置的数字完全不同的概率P基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,他们在一轮游戏中,对四种食物排出的序号完全不同的概率为(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表: X 02
21、4 6 8 10 12 14 16 18 20 P (2)这位家长对小孩的饮食习惯比较了解理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X4)P(X0)+P(X2),三轮游戏结果都满足“X4”的概率为()3,这个结果发生的可能性很小,这位家长对小孩饮食习惯比较了解【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题22、(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.