《云南省昆明市石林县重点名校2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省昆明市石林县重点名校2023年中考三模数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算结果正确的是()ABCD2cos30的值为( )A1BCD3如图,A、B、C是O上的三点,B=75,则AOC的度数是( )A150B140C130D1204不等式3x2(x+2)的解是()Ax2Bx2Cx4Dx45如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )ABCD6如下字体的四个汉字中,是轴对称图形的是( )ABCD7从3、1、2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )ABCD8图(1)是一个长为2m,宽为2n(mn)的长方形,用剪刀沿图中虚线(对称轴)剪开
3、,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A2mnB(m+n)2C(m-n)2Dm2-n29如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分10下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(ab)2a2b2D(ab)2a2a2二、填空题(共7小题,每小题3分,满分21分)11如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE5cm, 且t
4、anEFC,那么矩形ABCD的周长_cm12如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.13在ABC中,MNBC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_14已知RtABC中,C=90,AC=3,BC=,CDAB,垂足为点D,以点D为圆心作D,使得点A在D外,且点B在D内设D的半径为r,那么r的取值范围是_15因式分解:x23x+(x3)=_16不等式组的解集是_17如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_三、解答题(共7小题,满分
5、69分)18(10分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为C的切线(2)求图中阴影部分的面积19(5分)如图,在AOB中,ABO=90,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且BOD的面积SBOD=1求反比例函数解析式;求点C的坐标20(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定
6、为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?21(10分)如图,在边长为1的小正方形组成的方格纸上,将ABC绕着点A顺时针旋转90画出旋转之后的ABC;求线段AC旋转过程中扫过的扇形的面积22(10分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第
7、二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价进价)23(12分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元若该公司对此项计划的投资不低于1536万元,不高于1552万元请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出
8、答案)24(14分)如图,在图中求作P,使P满足以线段MN为弦且圆心P到AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大2、D【解析】cos30=故选D3、A【解
9、析】直接根据圆周角定理即可得出结论【详解】A、B、C是O上的三点,B=75,AOC=2B=150故选A4、D【解析】不等式先展开再移项即可解答.【详解】解:不等式3x2(x+2),展开得:3x2x+4,移项得:3x-2x4,解之得:x4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.5、B【解析】根据折叠前后对应角相等可知解:设ABE=x,根据折叠前后角相等可知,C1BE=CBE=50+x,所以50+x+x=90,解得x=20故选B“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形
10、状和大小不变,如本题中折叠前后角相等6、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形7、B【解析】解:画树状图得:共有6种等可能的结果,其中(1,2),(3,2)点落在第四项象限,P点刚好落在第四象限的概率=故选B点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键8、C【解析】解:由题意可得,正方形的边长为(m
11、+n),故正方形的面积为(m+n)1又原矩形的面积为4mn,中间空的部分的面积=(m+n)1-4mn=(m-n)1故选C9、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四
12、边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.10、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、36.【解析】试题分析:AFE和ADE关于AE对称,AFED90,AFAD,EFDE.tanEFC,可设EC3x,CF4x,那么EF5x
13、,DEEF5x.DCDECE3x5x8x.ABDC8x.EFCAFB90, BAFAFB90,EFCBAF.tanBAFtanEFC,.AB8x,BF6x.BCBFCF10x.AD10x.在RtADE中,由勾股定理,得AD2DE2AE2.(10x)2(5x)2(5)2.解得x1.AB8x8,AD10x10.矩形ABCD的周长8210236.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.12、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=4
14、5,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用13、1【解析】MNBC,AMNABC,即,MN=1.故答案为1.14、【解析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论【详解】解:RtABC中,ACB=90,AC=3,BC=,AB=1CDAB,CD=ADBD=CD2,设AD=x,BD=1-x解得x=,点A在圆外,点B在圆内,r的范围是,故答案为【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键15、 (x-3)(x+1);【解析】根据
15、因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x23x+x3=x22x3=(x3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x3)+(x3)=(x3)(x+1).故答案为(x3)(x+1)点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.16、2x1【解析】分别解两个不等式得到x1和x2,然后根据大小小大中间找确定不等数组的解集【详解】解:,解得x1,解得x2,所以不等式组的解集为2x1故答案为
16、2x1【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到17、1【解析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在RtABC中,由勾股定理:x2=(8-x)2+22,解得:x=,4x=1,即菱形的最大周长为1cm故答案是:1【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程三、解答题(共7小题,满分69分)18、 (1)证明见
17、解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键19、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)【解析】(1)由SBOD=1可得
18、BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标【详解】(1)ABO=90,OB=1,SBOD=1,OBBD=1,解得BD=2,D(1,2)将D(1,2)代入y=,得2=,k=8,反比例函数解析式为y=;(2)ABO=90,OB=1,AB=8,A点坐标为(1,8),设直线OA的解析式为y=kx,把A(1,8)代入得1k=8,解得k=2,直线AB的解析式为y=2x,解方程组得或,C点坐标为(2,1).20、(1)该农户想要每天获得150元得销售利润,销售价应定为
19、每千克25元或35元;(2)192元.【解析】(1)直接利用每件利润销量=总利润进而得出等式求出答案;(2)直接利用每件利润销量=总利润进而得出函数关系式,利用二次函数增减性求出答案【详解】(1)根据题意得:(x20)(2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x20)(2x+1)=2(x30)2+200,a=2,抛物线开口向下,当x30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元当x=28时,W最大=2(2830)2+200=192(元)销售价定为每千克28元时,每
20、天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键21、.(1)见解析(2)【解析】(1)根据网格结构找出点B、C旋转后的对应点B、C的位置,然后顺次连接即可.(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【详解】解:(1)ABC如图所示:(2)由图可知,AC=2,线段AC旋转过程中扫过的扇形的面积.22、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.【解析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进
21、的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T恤衫每件进价是x元,由题意,得,解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元.(2)设剩余的T恤衫每件售价y元由(1)知,第二批购进=50件由题意,得12050+y504950650,解得y80.答:剩余的T恤衫每件售价至少要80元.23、(1)共有三种方案,分别为A型号16辆时, B型号24辆;A型号17辆时,B型号23辆;A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A
22、型号10辆,B型号 3辆两种方案【解析】(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式解答;(3)根据(2)中方案设计计算.【详解】(1)设生产A型号x辆,则B型号(40-x)辆153634x+42(40-x)1552解得,x可以取值16,17,18共有三种方案,分别为A型号16辆时, B型号24辆A型号17辆时,B型号23辆A型号18辆时,B型号22辆(2)设总利润W万元则W= =w随x的增大而减小当时,万元(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.24、见解析【解析】试题分析:先做出AOB的角平分线,再求出线段MN的垂直平分线就得到点P试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质