云南省大理州丽江怒江2023年高三第三次测评数学试卷含解析.doc

上传人:茅**** 文档编号:87837076 上传时间:2023-04-18 格式:DOC 页数:17 大小:1.95MB
返回 下载 相关 举报
云南省大理州丽江怒江2023年高三第三次测评数学试卷含解析.doc_第1页
第1页 / 共17页
云南省大理州丽江怒江2023年高三第三次测评数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《云南省大理州丽江怒江2023年高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省大理州丽江怒江2023年高三第三次测评数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数()ABC0D2已知二次函数的部分图象如图所示,则函数的零点所在区间为( )ABCD3国务院发布关

2、于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年4设是虚数单位,则( )ABC1D25自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最

3、低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种6已知集合,则等于( )ABCD7已知为等比数列,则( )A9B9CD8已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )ABCD9过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D810双曲线的渐近线方程为(

4、 )ABCD11设集合,则 ()ABCD12复数的虚部为( )ABC2D二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则_,双曲线的离心率为_14函数的定义域为_.15在四面体中, 分别是的中点则下述结论:四面体的体积为;异面直线所成角的正弦值为;四面体外接球的表面积为;若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为其中正确的有_(填写所有正确结论的编号)16已知随机变量服从正态分布,则_三、解答题:共70分。解答应写

5、出文字说明、证明过程或演算步骤。17(12分)已知椭圆C:(ab0)的两个焦点分别为F1(,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1k32k2,试求m,n满足的关系式.18(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围19(12分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线: 于点,点为的焦

6、点.圆心不在轴上的圆与直线, , 轴都相切,设的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切于点,过且垂直于的直线为,直线, 分别与轴相交于点, .当线段的长度最小时,求的值.20(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.21(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和22(10分)平面直角坐标系中,曲线的参数方程为(为

7、参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】略2、B【解析】由函数f(x)的图象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上单调递增,又g(0)1b0,g(1)e2b0,根据函数的零点存在性定理可知,函数g(x)的零点

8、所在的区间是(0,1),故选B.3、C【解析】观察图表,判断四个选项是否正确【详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误【点睛】本题考查统计图表,正确认识图表是解题基础4、C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.5、C【解析】先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种

9、.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.6、B【解析】解不等式确定集合,然后由补集、并集定义求解【详解】由题意或,故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型7、C【解析】根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】,又,可解得或设等比数列的公比为,则当时, ;当时, ,.故选:C【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.8、A【解析】根据题意,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个

10、横坐标为的交点,则,若函数图象的纵坐标不变,横坐标变为原来的倍, 则,所以当时,在有且仅有5个零点, ,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.9、C【解析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标

11、,从而求得参数的值本题难度一般10、A【解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.11、B【解析】直接进行集合的并集、交集的运算即可【详解】解:; 故选:B【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.12、D【解析】根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】设,根据中点

12、坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距设,即,即,又直线斜率为,即,在双曲线上,即,结合可解得:,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.14、【解析】对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域

13、,还考查了指数型不等式求解,属于基础题.15、【解析】补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.【详解】根据四面体特征,可以补图成长方体设其边长为,解得补成长,宽,高分别为的长方体,在长方体中:四面体的体积为,故正确异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;四面体外接球就是长方体的外接球,半径,其表面积为,故正确;由于,故截面为平行四边形,可得,设异面直线与所成的角为,则,算得,故正确故答案为:【点睛】此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于

14、熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.16、0.22.【解析】正态曲线关于x对称,根据对称性以及概率和为1求解即可。【详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)mn10【解析】试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1k3表示为直线l斜率的关系式,化简后得k1k32,于是可得m,n的关系式.试题

15、解析:(1)由题意,c,b1,所以a故椭圆C的方程为(2)当直线l的斜率不存在时,方程为x1,代入椭圆得,y不妨设A(1,),B(1,)因为k1k32又k1k32k2,所以k21所以m,n的关系式为1,即mn10当直线l的斜率存在时,设l的方程为yk(x1)将yk(x1)代入,整理得:(3k21)x26k2x3k230设A(x1,y1),B(x2,y2),则又y1k(x11),y2k(x21)所以k1k32所以2k22,所以k21所以m,n的关系式为mn10综上所述,m,n的关系式为mn10.考点:椭圆标准方程,直线与椭圆位置关系,18、(1);(2)【解析】(1),对函数求导,分别求出和,即

16、可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,当时,在上恒成立,则在上单调递增,从而成立,故符合题意;当时,令,解得,即在上单调递减,则,故不符合题意;当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【点睛】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.19、 (1) (2)见解析.【解析】试题分析:(1)设根据题意得到,化简得到轨迹方程;(2)设,

17、 ,构造函数研究函数的单调性,得到函数的最值.解析:(1)因为抛物线的方程为,所以的坐标为,设,因为圆与轴、直线都相切,平行于轴,所以圆的半径为,点 ,则直线的方程为,即, 所以,又,所以,即,所以的方程为 (2)设, ,由(1)知,点处的切线的斜率存在,由对称性不妨设,由,所以,所以, 所以 令,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即取得最小值, 此时 点睛:求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可

18、运算此类题计算一定要仔细.20、(1)(2)证明见解析【解析】(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,设的方程为,与联立消去得,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题21、(1);(2)【解析】(1)由化为,利

19、用数列的通项公式和前n项和的关系,得到是首项为,公差为的等差数列求解.(2)由(1)得到,再利用错位相减法求解.【详解】(1)可以化为,又时,数列从开始成等差数列,代入得是首项为,公差为的等差数列,.(2)由(1)得,两式相减得,.【点睛】本题主要考查数列的通项公式和前n项和的关系和错位相减法求和,还考查了运算求解的能力,属于中档题.22、(1)(2)【解析】(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即曲线的极坐标方程为直线的极坐标方程为,即,直线的直角坐标方程为(2)设,解得又,(舍去)点到直线的距离为,的面积为【点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁