《云南省云大附中2023届高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省云大附中2023届高三第五次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设数列的各项均为正数,前项和为,且,则( )A128B65C64D632定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD3已知数列为等差数列,为其前 项和,则( )ABCD
2、4三国时代吴国数学家赵爽所注周髀算经中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )ABCD5点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为( ) ABCD6已知,则,不可能满足的关系是()ABCD7将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD8已知双曲线(,)的左、右顶点分别为,虚轴的两个端点分
3、别为,若四边形的内切圆面积为,则双曲线焦距的最小值为( )A8B16CD9如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D上述三种情况都有可能10已知向量,则与共线的单位向量为( )ABC或D或11已知集合,则集合( )ABCD12已知函数在上的值域为,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在复平面内,复数,对应的向量分别是,则_.14在数列中,曲线在点处的切线经过点,下列四个结论:;数列是等比数列;其中所有正确结论的编号是_.15若、满足约束条件,则的最小值为_.16如图,在等腰三角形中,已知,分别
4、是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )18(12分)在中,内角的对边分别是,已知(1)求的值;(2)若,求的面积19(12分)已知数列,其前项和为,满足,其中,.若,(),求证:数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.20(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,三棱锥的体积为,求菱形的边长.21(12分)某校共有学生2000人,其中男生900人,女生1100
5、人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)0,1(1,2(2,3(3,4(4,5(5,6频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2
6、.P(K2k0)0.1000.0500.0100.0052.7063.8416.6357.87922(10分)设椭圆E:(a,b0)过M(2,) ,N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛
7、】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.2、D【解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.3、B【解析】利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等
8、差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.4、A【解析】分析:设三角形的直角边分别为1,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示
9、它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型5、D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得,(当且仅当时等号成立),的最小值为,故选:D【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题6、C【解析】根据即可得出,根据,即可判断出结果【详解】;,;,故正确;,故C错误;,故D正确故C【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题7、B【解析
10、】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键8、D【解析】根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小
11、值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.9、B【解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题10、D【解析】根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.【详解】因为,则,所以,设与共线的单位向量为,则,解得 或所以与共线的单位向量为或.故选:D.【点睛】本题考查向量的坐标运
12、算以及共线定理和单位向量的定义.11、D【解析】根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.12、A【解析】将整理为,根据的范围可求得;根据,结合的值域和的图象,可知,解不等式求得结果.【详解】当时,又,由在上的值域为 解得:本题正确选项:【点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由坐标系可知考点:复数运算14、【解析】先利用导数求得曲线在点处的切线方程,由此求得与的递
13、推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.【详解】,曲线在点处的切线方程为,则.,则是首项为1,公比为的等比数列,从而,.故所有正确结论的编号是.故答案为:【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.15、【解析】作出不等式组所表示的可行域,利用平移直线的方法找出使得目标函数取得最小时对应的最优解,代入目标函数计算即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,即点,平移直线,当直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故答案为:.【点睛】本题考查简
14、单的线性规划问题,考查线性目标函数的最值问题,考查数形结合思想的应用,属于基础题.16、【解析】根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时, 取得最小值因而故答案为: 【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(
15、1)见证明【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证exx1xlnx10,根据xlnxx(x1),问题转化为只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根据函数的单调性证明即可【详解】(1),当,当,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1exx1即证exx1xlnx10,先证明lnxx1,取h(x)lnxx+1,则h(x),易知h(x)在(0,1)递增,在(1,+)递减,故h(x)h(1)0,即lnxx1,当且仅当x1时取“”,故xlnxx(x1)
16、,exx1xlnxex1x1+x1,故只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),则k(x)ex4x+1,令F(x)k(x),则F(x)ex4,令F(x)0,解得:x1ln1,F(x)递增,故x(0,1ln1时,F(x)0,F(x)递减,即k(x)递减,x(1ln1,+)时,F(x)0,F(x)递增,即k(x)递增,且k(1ln1)58ln10,k(0)10,k(1)e18+10,由零点存在定理,可知x1(0,1ln1),x1(1ln1,1),使得k(x1)k(x1)0,故0xx1或xx1时,k(x)0,k(x)递增,当x1xx1时,k(x)0,k(x)递
17、减,故k(x)的最小值是k(0)0或k(x1),由k(x1)0,得4x11,k(x1)1+x11(x11)(1x11),x1(1ln1,1),k(x1)0,故x0时,k(x)0,原不等式成立【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题18、(1);(2).【解析】(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,, 利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得. , , .(2),由正弦定理,可得. ab,, . .【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定
18、要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19、(1)见解析(2)(3)见解析【解析】试题分析:(1)(), 所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以, 又由,得,即,所以,故数列是等比数列 (2)若是等比数列,设其公比为( ),当时,即,得, 当时,即,得,当时,即,得,-,得 , -,得 , 解得代入式,得 此时(),所以,是公比为的等比数列,故 (3)证明:若,由,得
19、,又,解得由, ,代入得,所以,成等差数列,由,得,两式相减得:即所以相减得:所以所以, 因为,所以,即数列是等差数列.20、(1)证明见解析;(2)1【解析】(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值【详解】(1)四边形为菱形,平面,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,菱形的边长为1【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解
20、掌握水平21、(1)男生人数为人,女生人数55人.(2)列联表答案见解析,有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【解析】(1)求出男女比例,按比例分配即可;(2)根据题意结合频率分布表,先求出二联表中数值,再结合公式计算,利用表格数据对比判断即可【详解】(1)因为男生人数:女生人数900:11009:11,所以男生人数为,女生人数1004555人,(2)由频率频率直方图可知学生每周平均体育锻炼时间超过2小时的人数为:(10.3+10.25+10.15+10.05)10075人,每周平均体育锻炼时间超过2小时的女生人数为37人,联表如下:男生女生总计每周平均体育锻炼时间不
21、超过2小时71825每周平均体育锻炼时间超过2小时383775总计4555100因为3.8923.841,所以有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【点睛】本题考查分层抽样,独立性检验,熟记公式,正确计算是关键,属于中档题.22、(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性