云南省西畴县一中2023届高三下第一次测试数学试题含解析.doc

上传人:茅**** 文档编号:87836854 上传时间:2023-04-18 格式:DOC 页数:17 大小:1.37MB
返回 下载 相关 举报
云南省西畴县一中2023届高三下第一次测试数学试题含解析.doc_第1页
第1页 / 共17页
云南省西畴县一中2023届高三下第一次测试数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《云南省西畴县一中2023届高三下第一次测试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省西畴县一中2023届高三下第一次测试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若双曲线的离心率为,则双曲线的焦距为( )ABC6D82已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的( )条件.A充分不必要B必要不充分C充要D既不充分也不必要3已知不等式组表

2、示的平面区域的面积为9,若点, 则的最大值为( )A3B6C9D124已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD5函数y=sin2x的图象可能是ABCD6某几何体的三视图如图所示,则该几何体中的最长棱长为( )ABCD7已知集合,则为( )A0,2)B(2,3C2,3D(0,28记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围( )ABCD9设、分别是定义在上的奇函数和偶函数,且,则( )AB0C1D310已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11已知展开式的二项

3、式系数和与展开式中常数项相等,则项系数为( )A10B32C40D8012据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )ACPI一篮子商品中所占权重最大的是居住BCPI一篮子商品中吃穿住所占权重超过50%C猪肉在CPI一篮子商品中所占权重约为2.5%D猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%二、填空题:本题共4小题,每小题5分,共20分。13已知实数,满足约束条件,则的最大值是

4、_.14设f(x)etx(t0),过点P(t,0)且平行于y轴的直线与曲线C:yf(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1),则PRS的面积的最小值是_15在中,角A,B,C的对边分别为a,b,c,且,则_.16在中,已知,是边的垂直平分线上的一点,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒

5、的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82818(12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲

6、线的直角坐标方程;(2)若射线与和分别交于点,求19(12分)如图,在四棱锥PABCD中,底面ABCD为菱形,PA底面ABCD,BAD60,AB=PA4,E是PA的中点,AC,BD交于点O.(1)求证:OE平面PBC;(2)求三棱锥EPBD的体积.20(12分)在锐角中,分别是角的对边,且(1)求角的大小;(2)求函数的值域21(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.22(10分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.参考答案一、选择题

7、:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:双曲线的离心率为,所以,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.2、B【解析】根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.3、C【解析】分析:先画出满足约束

8、条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.4、D【解析】设双曲线C的左焦点

9、为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.5、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,

10、判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复6、C【解析】根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,过S作,连接BD ,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC 平面ABC,过S作,连接BD,则 ,所以 , ,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.7、B【解析】先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算

11、,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.8、D【解析】做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知 方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.9、C【解析】先根据奇偶

12、性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。10、B【解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题11、D【解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题

13、考查二项式定理通项公式,熟悉公式,细心计算,属基础题.12、D【解析】A.从第一个图观察居住占23%,与其他比较即可. B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A. CPI一篮子商品中居住占23%,所占权重最大的,故正确.B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子

14、商品中所占权重约为2.5%,故正确.D. 猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【点睛】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.14、【解析】计算R(t,0),PRt(t),PRS的面积为S,

15、导数S,由S0得t1,根据函数的单调性得到最值.【详解】PQy轴,P(t,0),Q(t,f(t)即Q(t,),又f(x)etx(t0)的导数f(x)tetx,过Q的切线斜率kt,设R(r,0),则k,rt,即R(t,0),PRt(t),又S(1,f(1)即S(1,et),PRS的面积为S,导数S,由S0得t1,当t1时,S0,当0t1时,S0,t1为极小值点,也为最小值点,PRS的面积的最小值为故答案为:【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.15、【解析】利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,即.故答案为:.【点睛】本题考查利用

16、正弦定理实现边角互化,属基础题.16、【解析】作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,.故答案为:.【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为是否戴口罩出行的行为与年龄有关.(2)【解析】(1) 根据列联表和独立性检验的公式计算出观测值,从而由参考数据作出判断.(2) 因为样本中出行不戴口罩的居民有30人,其中年轻人有10人,用样本估计总体,则出行不戴口罩的年轻人的概率为,

17、是老年人的概率为.根据独立重复事件的概率公式即可求得结果.【详解】(1)由题意可知,有的把握认为是否戴口罩出行的行为与年龄有关.(2)由样本估计总体,出行不戴口罩的年轻人的概率为,是老年人的概率为.人未戴口罩,恰有2人是青年人的概率.【点睛】本题主要考查独立性检验及独立重复事件的概率求法,难度一般.18、(1): ;: (2) 【解析】(1)由可得,由,消去参数,可得直线的普通方程为 由可得,将,代入上式,可得,所以曲线的直角坐标方程为(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,所以19、(1)证明见解析(2)【解析】(1)连接OE,利用三角形中位线定理得到OEPC,即可证出

18、OE平面PBC;(2)由E是PA的中点,求出SABD,即可求解.【详解】(1)证明:如图所示:点O,E分别是AC,PA的中点,OE是PAC的中位线,OEPC,又OE平面PBC,PC平面PBC,OE平面PBC;(2)解:PAAB4,AE2,底面ABCD为菱形,BAD60,SABD,三棱锥EPBD的体积.【点睛】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.20、(1);(2)【解析】(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数

19、为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【详解】(1),由正弦定理得:,即,又,.(2)在锐角中,函数的值域为【点睛】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.21、(1)见解析(2)见解析【解析】(1)建立如图所示的空间直角坐标系,设ACBDN,连结NE.则N,E(0,0,1),A(,0),M.,.且NE与AM不共线NEAM.NE平面BDE,AM平面BDE,AM平面BDE.(2)由(1)知,D(,0,0),F(,1),(0,1),0,AMDF.同理AMBF.又DFBFF,AM平面BDF.22、(1);(2).【解析】(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得: ,且为锐角 (2) 【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁