2022-2023学年福建省厦门市竹坝校中考数学最后冲刺模拟试卷含解析.doc

上传人:茅**** 文档编号:87800799 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.14MB
返回 下载 相关 举报
2022-2023学年福建省厦门市竹坝校中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年福建省厦门市竹坝校中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年福建省厦门市竹坝校中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省厦门市竹坝校中考数学最后冲刺模拟试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD2的值是ABCD3如图,该图形经过

2、折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A着B沉C应D冷4如果向北走6km记作+6km,那么向南走8km记作()A+8km B8km C+14km D2km5如图,在中,,点分别在上,于,则的面积为( )ABCD6如图所示,将含有30角的三角板的直角顶点放在相互平行的两条直线其中一条上,若1=35,则2的度数为()A10B20C25D307如图,已知ABC,DCE,FEG,HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD8如图,ABC中,若DEBC,EFAB,则下列比例式正确的是( )AB

3、CD9实数的相反数是( )ABCD10在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D611如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果AEF的面积为2,那么四边形CDFE的面积等于( )A18B22C24D4612如图,矩形是由三个全等矩形拼成的,与,分别交于点,设,的面积依次为,若,则的值为( )A6B8C10D12二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,在四边形ABCD中,ADAB,C=110,它的一个外角ADE=60,则B的大小是_14如图,已知O1与O2相交于A、B两点,延长连心线O1O2交O2于点P,联结

4、PA、PB,若APB=60,AP=6,那么O2的半径等于_15如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tanAOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_.16小明把一副含45,30的直角三角板如图摆放,其中CF90,A45,D30,则+等于_17分解因式:x21=_18关于x的不等式组的整数解共有3个,则a的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点在的直径的延长线上,点在上,且AC=CD,ACD=120.求证:是的切线;若的半径为2,求图中阴影部分的面积.

5、20(6分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率21(6分)已知关于x的一元二次方程(a+c)x2+2bx+(ac)=0,其中a、b、c分别为ABC三边的长如果x=1是方程的根,试判断ABC的

6、形状,并说明理由;如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;如果ABC是等边三角形,试求这个一元二次方程的根22(8分)在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使DAE=90,连接CE探究:如图,当点D在线段BC上时,证明BC=CE+CD应用:在探究的条件下,若AB=,CD=1,则DCE的周长为 拓展:(1)如图,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 (2)如图,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 23(8分)某调查小组采用简单随机抽

7、样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间24(10分)已知:在O中,弦AB=AC,AD是O的直径求证:BD=CD25(10分)如图,ABC中,AB=AC,以AB为直径的O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F(1)求证:EF是O的切线;(2)若F=30,BF=3,求弧AD的长26(12分)如图,在ABC中,C=90,BAC

8、的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F试判断直线BC与O的位置关系,并说明理由;若BD=2,BF=2,求O的半径27(12分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,故C不符合题意;D.0,故

9、D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键2、D【解析】根据特殊角三角函数值,可得答案【详解】解:,故选:D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键3、A【解析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键4、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来

10、【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具有相反意义的量5、C【解析】先利用三角函数求出BE=4m,同(1)的方法判断出1=3,进而得出ACQCEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】,CQ=4m,BP=5m,在RtABC中,sinB=,tanB=,如图2,过点P作PEBC于E,在RtBPE中,PE=BPsinB=5m=3m,tanB=,BE=4m,CE=BC-BE=8-4m,同(1)的方法得,1=3,ACQ=CEP,ACQCEP, , ,m=,PE=

11、3m=,SACP=SACB-SPCB=BCAC-BCPE=BC(AC-PE)=8(6- )=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出ACQCEP是解题的关键6、C【解析】分析:如图,延长AB交CF于E,ACB=90,A=30,ABC=601=35,AEC=ABC1=25GHEF,2=AEC=25故选C7、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI=2BC=2,=,=ABI=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,QI=AI=故选D点睛:本题

12、主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键8、C【解析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解【详解】解:DEBC,BDBC,选项A不正确;DEBC,EFAB,EF=BD,选项B不正确;EFAB,选项C正确;DEBC,EFAB,=,CEAE,选项D不正确;故选C【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健9、D【解析】根据相反数的定义求解即可【详解】的相反数是-,故选D【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数10、A

13、【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A11、B【解析】连接FC,先证明AEFBEC,得出AEEC=13,所以SEFC=3SAEF,在根据点F是ABCD的边AD上的三等分点得出SFCD=2SAFC,四边形CDFE的面积=SFCD+ SEFC,再代入AEF的面积为2即可求出四边形CDFE的面积.【详解】解:ADBC,EAF=ACB,AFE=FBC;AEF=BEC,AEFBEC,=,AEF与EFC高相等,SEFC=3SAEF,点F是ABCD的边AD上的三等分点,SFCD=2SAFC,AEF的面积为2

14、,四边形CDFE的面积=SFCD+ SEFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.12、B【解析】由条件可以得出BPQDKMCNH,可以求出BPQ与DKM的相似比为,BPQ与CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出【详解】矩形AEHC是由三个全等矩形拼成的,AB=BD=CD,AEBFDGCH,BQP=DMK=CHN,ABQADM,ABQACH,EF=FG= BD=CD,ACEH,四边形BEFD、四边形DFGC是平行四边形, BEDFCG,BPQ=DKM=CNH, 又BQP

15、=DMK=CHN,BPQDKM,BPQCNH,即,即,解得:,故选:B【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、40【解析】【分析】根据外角的概念求出ADC的度数,再根据垂直的定义、四边形的内角和等于360进行求解即可得.【详解】ADE=60,ADC=120,ADAB,DAB=90,B=360CADCA=40,故答案为40【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360、外角的概念是解题的关键14、2【解析】由题意得出ABP

16、为等边三角形,在RtACO2中,AO2=即可.【详解】由题意易知:PO1AB,APB=60ABP为等边三角形,AC=BC=3圆心角AO2O1=60 在RtACO2中,AO2=2.故答案为2.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.15、24【解析】分析:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,由tanAOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2SCOD=40=OACF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过

17、点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,四边形ABCO是菱形,ABCO,AOBC,DEAO,四边形AOED和四边形DECB都是平行四边形,SAOD=SDOE,SBCD=SCDE,S菱形ABCD=2SDOE+2SCDE=2SCOD=40,tanAOC=,CF=4x,OF=3x,在RtCOF中,由勾股定理可得OC=5x,OA=OC=5x,S菱形ABCO=AOCF=5x4x=20x2=40,解得:x=,OF=,CF=,点C的坐标为,点C在反比例函数的图象上,k=.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA

18、用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,SCOD=20得到S菱形ABCO=2SCOD=40.16、210【解析】根据三角形内角和定理得到B45,E60,根据三角形的外角的性质计算即可【详解】解:如图:CF90,A45,D30,B45,E60,2+3120,+A+1+4+BA+B+2+390+120210,故答案为:210【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键17、(x+1)(x1)【解析】试题解析:x21=(x+1)(x1)考点:因式分解运用公式法18、【解析】首先确定不等式组的解集,先利

19、用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解:由不等式得:xa,由不等式得:x1,所以不等式组的解集是ax1关于x的不等式组的整数解共有3个,3个整数解为0,1,2,a的取值范围是3a2故答案为:3a2【点睛】本题考查了不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析(2)图中阴影部分的面积为.【解析】(1)连接OC只需证明OCD90根据等腰三角形的性质即

20、可证明;(2)先根据直角三角形中30的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积【详解】(1)证明:连接OCACCD,ACD120,AD30OAOC,2A30OCDACD290,即OCCD,CD是O的切线;(2)解:12A60S扇形BOC在RtOCD中,D30,OD2OC4,CDSRtOCDOCCD2图中阴影部分的面积为:20、(1)50,360;(2) 【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能

21、和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种考点:1、扇形统计图,2、条形统计图,3、概率21、 (1) ABC是等腰三角形;(2)ABC是直角三角形;(3) x1=0,x2=1【解析】试题分析:(1)直接将x=1代入得出关于a,b的等式,进而得出a=b,即可判断ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断A

22、BC的形状;(3)利用ABC是等边三角形,则a=b=c,进而代入方程求出即可试题解析:(1)ABC是等腰三角形;理由:x=1是方程的根,(a+c)(1)22b+(ac)=0,a+c2b+ac=0,ab=0,a=b,ABC是等腰三角形;(2)方程有两个相等的实数根,(2b)24(a+c)(ac)=0,4b24a2+4c2=0,a2=b2+c2,ABC是直角三角形;(3)当ABC是等边三角形,(a+c)x2+2bx+(ac)=0,可整理为:2ax2+2ax=0,x2+x=0,解得:x1=0,x2=1考点:一元二次方程的应用22、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC=

23、 CE-CD【解析】试题分析:探究:判断出BAD=CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出ABDACE,得出BD=CE,即可得出结论;(2)同探究的方法得出ABDACE,得出BD=CE,即可得出结论试题解析:探究:BAC=90,DAE=90,BAC=DAEBAC=BAD+DAC,DAE=CAE+DAC,BAD=CAEAB=AC,AD=AE,ABDACEBD=CEBC=BD+CD,BC=CE+CD应用:在RtABC中,AB=AC=,ABC=ACB=45,BC=2,CD=1,BD=BC-CD=1,由探究知,AB

24、DACE,ACE=ABD=45,DCE=90,在RtBCE中,CD=1,CE=BD=1,根据勾股定理得,DE=,DCE的周长为CD+CE+DE=2+故答案为2+拓展:(1)同探究的方法得,ABDACEBD=CEBC=CD-BD=CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,ABDACEBD=CEBC=BD-CD=CE-CD,故答案为BC=CE-CD23、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天

25、中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数为:5004.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数24、证明见解析【解析】根据AB=AC,得到,于是得到ADB=ADC,根据AD是O的直径,得到B=C=90,根据三角形的内角和定理得到BAD=DAC,于是得到结论【详解】证明:AB=AC,ADB=ADC,AD是O的直径,B=C=90,BAD=DAC,BD=C

26、D【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键25、(1)见解析;(2)2.【解析】证明:(1)连接OD,AB是直径,ADB=90,即ADBC,AB=AC,AD平分BAC,OAD=CAD,OA=OD,OAD=ODA,ODA=CAD,ODAC,DEAC,ODEF,OD过O,EF是O的切线(2)ODDF,ODF=90,F=30,OF=2OD,即OB+3=2OD,而OB=OD,OD=3,AOD=90+F=90+30=120,的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关

27、问题也考查了弧长公式26、(1)相切,理由见解析;(1)1【解析】(1)求出OD/AC,得到ODBC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可【详解】(1)直线BC与O的位置关系是相切,理由是:连接OD,OA=OD,OAD=ODA,AD平分CAB,OAD=CAD,ODA=CAD,ODAC,C=90,ODB=90,即ODBC,OD为半径,直线BC与O的位置关系是相切;(1)设O的半径为R,则OD=OF=R,在RtBDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出ODBC.27、详见解析.【解析】四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形【详解】证明:在四边形ABCD中,OA=OC,OB=OD,四边形ABCD是平行四边形,OA=OB=OC=OD,又AC=AO+OC,BD=OB+DO,AC=BD,平行四边形是矩形,在AOB中,AOB是直角三角形,即ACBD,矩形ABCD是正方形.【点睛】本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁