《2022-2023学年湖北省武汉市江夏区中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省武汉市江夏区中考适应性考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果向北走6km记作+6km,那么向南走8km记作()A+8km B8km C+14km D2km2
2、从 ,0, ,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD3如图,AB为O的直径,C、D为O上的点,若ACCDDB,则cosCAD ( )ABCD4如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A5BCD75如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )A1B2C5D66如图,在四边形ABCD中,ADBC,ABC+DCB=90,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1若S2=48,S1=9,则S1的值为()A18B12C9D17小明调查了班级里20位同学本学期购买课外书的花
3、费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,508如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD9如图,有一张三角形纸片ABC,已知BCx,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )ABCD10如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A国B厉C害D了11如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分BED,则BE的长为()ABCD412一个多边形的每个内角都等于120,则
4、这个多边形的边数为( )A4B5C6D7二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在33的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是_14已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_15钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为_16如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30在图中画出弦AD,使AD=1,则CAD的度数为_17若从 -3,-1,0,1
5、,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_.18如果x3nym+4与3x6y2n是同类项,那么mn的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在矩形纸片ABCD中,AB=6,BC=1把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长20(6分
6、) (1)解方程: +4(2)解不等式组并把解集表示在数轴上:.21(6分)计算:()0|3|+(1)2015+()122(8分)如图,RtABC中,C=90,O是RtABC的外接圆,过点C作O的切线交BA的延长线于点E,BDCE于点D,连接DO交BC于点M.(1)求证:BC平分DBA;(2)若,求的值23(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由24(10分)如图,某游乐园
7、有一个滑梯高度AB,高度AC为3米,倾斜角度为58为了改善滑梯AB的安全性能,把倾斜角由58减至30,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58=0.85,cos58=0.53,tan58=1.60)25(10分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长26(12分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确”请回答:小楠的作图依据是_27(12分)如图,已知ABC,分别以AB,AC为直角
8、边,向外作等腰直角三角形ABE和等腰直角三角形ACD,EAB=DAC=90,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:BDA=ECA(2)若m=,n=3,ABC=75,求BD的长.(3)当ABC=_时,BD最大,最大值为_(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作
9、8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具有相反意义的量2、C【解析】根据有理数的定义可找出在从,0,6这5个数中只有0、6为有理数,再根据概率公式即可求出抽到有理数的概率【详解】在,0,6这5个数中有理数只有0、6这3个数,抽到有理数的概率是,故选C【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键3、D【解析】根据圆心角,弧,弦的关系定理可以得出=,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值【详解】解:=,故选D【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键4、C
10、【解析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得,解得 所以,一次函数解析式y=x+1,再将A(3,m)代入,得m=3+1=.故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.5、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案详解:数据1,2,x,5,6的众数为6,x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一
11、组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.6、D【解析】过A作AHCD交BC于H,根据题意得到BAE=90,根据勾股定理计算即可【详解】S2=48,BC=4,过A作AHCD交BC于H,则AHB=DCBADBC,四边形AHCD是平行四边形,CH=BH=AD=2,AH=CD=1ABC+DCB=90,AHB+ABC=90,BAH=90,AB2=BH2AH2=1,S1=1故选D【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键7、A【解析】
12、分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由扇形统计图可知,购买课外书花费为100元的同学有:2010%=2(人),购买课外书花费为80元的同学有:2025%=5(人),购买课外书花费为50元的同学有:2040%=8(人),购买课外书花费为30元的同学有:2020%=4(人),购买课外书花费为20元的同学有:205%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的
13、众数为50元,中位数为(50+50)2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系8、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图9、C【解析】根据全等三角形的判定定理进行判断【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C
14、、如图1,DECB+BDE,x+FECx+BDE,FECBDE,所以其对应边应该是BE和CF,而已知给的是BDFC3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,DECB+BDE,x+FECx+BDE,FECBDE,BDEC2,BC,BDECEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键10、A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:
15、正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.11、D【解析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,D=90,ADBC,然后根据AE平分BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】四边形ABCD是矩形,AB=CD=3,AD=BC=4,D=90,ADBC,DAE=BEA,AE是DEB的平分线,BEA=AED,DAE=AED,DE=AD=4,再RtDEC中,EC=,BE=BC-EC=4-.故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理
16、的应用.12、C【解析】试题解析:多边形的每一个内角都等于120,多边形的每一个外角都等于180-120=10,边数n=31010=1故选C考点:多边形内角与外角二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为【点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键14、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数【详解】袋中小球的总个数是:2=8(个)故答案
17、为8个【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键15、【解析】解:将170000用科学记数法表示为:1.71故答案为1.7116、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1,AD=AD=1,AB=2,cosDAB=cosDAB=,DAB=DAB=60,CAB=30,CAD=30,CAD=1CAD的度数为:30或1故答案为30或1【点睛】本题考查圆周角定理;含30度角的直角三角形17、【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方
18、程组和双曲线,找出符号要求的可能性,从而可以解答本题详解:从3,1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是: (3,1)、(3,0)、(3,1)、(3,3)、 (1,3)、(1,0)、(1,1)、(1,3)、 (0,3)、(0,1)、(0,1)、(0,3)、 (1,3)、(1,1)、(1,0)、(1,3)、 (3,3)、(3,1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(3,1),(1,3),(3,1),故恰好使关于x,y的二元一次方程组有整数解
19、,且点(a,b)落在双曲线上的概率是:故答案为点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性18、0【解析】根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.故答案为0点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:BDC由BDC翻折而成, C=BAG=90,CD=AB=CD,AGB=DGC,ABG=ADE。在ABGCDG中,BAG=
20、C,AB= CD,ABG=AD C,ABGCDG(ASA)。(2)解:由(1)可知ABGCDG,GD=GB,AG+GB=AD。设AG=x,则GB=1x,在RtABG中,AB2+AG2=BG2,即62+x2=(1x)2,解得x=。(3)解:AEF是DEF翻折而成,EF垂直平分AD。HD=AD=4。tanABG=tanADE=。EH=HD=4。EF垂直平分AD,ABAD,HF是ABD的中位线。HF=AB=6=3。EF=EH+HF=。(1)根据翻折变换的性质可知C=BAG=90,CD=AB=CD,AGB=DGC,故可得出结论。(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-
21、x,在RtABG中利用勾股定理即可求出AG的长,从而得出tanABG的值。(3)由AEF是DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tanABG的值即可得出EH的长,同理可得HF是ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。20、(1)x=1(2)4x 【解析】(1)先将整理方程再乘以最小公分母移项合并即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可【详解】(1)+=4,方程整理得: =4,去分母得:x5=4(2x3),移项合并得:7x=7,解得:x=1;经检验x=1是分式方程的解;(2)解得:x解得:x4不等式组的解集是4x,在数轴上
22、表示不等式组的解集为:【点睛】本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.21、-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案详解:解:()0|3|+(1)2015+()1=13+(1)+2=1 点睛:本题主要考查的是实数的计算法则,属于基础题型理解各种计算法则是解决这个问题的关键22、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OCDE,结合BDDE可得OCBD,从而可得1=2,结合由OB=OC所得的1=3,即可得到2=3,从而可得BC平分DBA;(2)由OCB
23、D可得EBDEOC和DBMOCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,DE与O相切于点C,OCDE.BDDE,OCBD. . 1=2,OB=OC,1=3,2=3,即BC平分DBA. . (2)OCBD,EBDEOC,DBMOCM,. ,设EA=2k,AO=3k,OC=OA=OB=3k.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OCDE结合BDDE得到OCBD是解答第1小题的关键;(2)解答第2小题的关键是由OCBD得到EBDEOC和DBMOCM这样利用相似三角形的性质结合已知条件即可求得所求
24、值了.23、(1)10%;(1)会跌破10000元/m1【解析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,14000(1-x)1=11340,(1-x)1=0.81,x1=0.1=10%,x1=1.9(不合题意
25、,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=113400.81=9184.510000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键24、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析: RtABD中,根据30的角所对的直角边是斜边的一半得到AD的长,然后在RtABC中,求得AB的长后用即可求得增加的长度试题解析:
26、RtABD中,AC=3米,AD=2AC=6(m)在RtABC中, ADAB=63.532.5(m).调整后的滑梯AD比原滑梯AB增加2.5米.25、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定
27、理是解题的关键26、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【解析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【点睛】
28、本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定和性质27、135 m+n 【解析】试题分析:(1)由已知条件证ABDAEC,即可得到BDA=CEA;(2)过点E作EGCB交CB的延长线于点G,由已知条件易得EBG=60,BE=2,这样在RtBEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合ABDAEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时
29、,EC最大=BE+BC=,此时BD最大=EC最大=;(4)由ABDAEC可得AEC=ABD,结合ABE是等腰直角三角形可得EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.试题解析:(1)ABE和ACD都是等腰直角三角形,且EAB=DAC=90,AE=AB,AC=AD,EAB+BAC=BAC+DAC,即EAC=BAD,EACBAD,BDA=ECA;(2)如下图,过点E作EGCB交CB的延长线于点G,EGB=90,在等腰直角ABE,BAE=90,AB=m= ,ABE=45,BE=2,ABC=75,EBG=180-75-45=60,BG=1,EG=,GC=BG
30、+BC=4,CE=,EACBAD,BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,BD=EC,BD最大=EC最大=,此时ABC=180-ABE=180-45=135,即当ABC=135时,BD最大=;(4)ABDAEC,AEC=ABD,在等腰直角ABE中,AEC+CEB+ABE=90,ABD+ABE+CEB=90,BFE=180-90=90,EF2+BF2=BE2,又在等腰RtABE中,BE2=2AE2,2AE2=EF2+BF2.点睛:(1)解本题第2小题的关键是过点E作EGCB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在RtEGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.