《2022-2023学年福建省永春第一中学中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省永春第一中学中考五模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,若AB6,EF2,则BC的长为()A8B10C12D142如图1,在矩形ABCD中,动点E从A出发
2、,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()AB5C6D3某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A这10名同学体育成绩的中位数为38分B这10名同学体育成绩的平均数为38分C这10名同学体育成绩的众数为39分D这10名同学体育成绩的方差为24方程的解为()Ax=1Bx=1Cx=2Dx=35在ABC中,点D、E分别在边AB、A
3、C上,如果AD=1,BD=3,那么由下列条件能够判断DEBC的是()ABCD6计算(1)的结果是( )Ax1BCD7某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A28109B2.8108C2.8109D2.810108近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A1.8105B1.8104C0.18106D181049如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD10如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D1
4、1关于x的一元二次方程x24x+k=0有两个相等的实数根,则k的值是( )A2B2C4D412统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A13、15、14B14、15、14C13.5、15、14D15、15、15二、填空题:(本大题共6个小题,每小题4分,共24分)13已知二次函数中,函数y与x的部分对应值如下:.-101 23. 105212.则当时,x的取值范围是_.14反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=_
5、15若y=,则x+y= 16如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 17如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点若DE=1,则DF的长为_18计算的结果等于_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,2)求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论20(6分)已知关于
6、x的一元二次方程x26x+(2m+1)=0有实数根求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x220,求m的取值范围21(6分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积22(8分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长23(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,
7、若点P是抛物线上任意一点,PHl于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,中,抛物线的关联点是_ ;(2)如图2,在矩形ABCD中,点,点,若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是_.24(10分)如图,点D,C在BF上,ABEF,A=E,BD=CF求证:AB=EF25(10分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a3)的图象与x轴
8、交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CPx轴,垂足为点P,连接AD、BC(1)求点A、B、D的坐标;(2)若AOD与BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.26(12分)如图,点是线段的中点,求证:27(12分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标画树状图列表,写出点M所有可能的坐标;求点在函数的图象上的概率参考答案一、选择题(本大题共12个小题
9、,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:根据平行四边形的性质可知AB=CD,ADBC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.2、B【解析】易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【详解】若点E在BC上时,如图EFC+AEB90,FEC+EF
10、C90,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为25;故选B【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键3、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数=38.4方差=(3638.4)2+2(3738.4)2+(3838.4)2+4(3938.4
11、)2+2(4038.4)2=1.64;选项A,B、D错误;故选C考点:方差;加权平均数;中位数;众数4、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.5、D【解析】如图,AD=1,BD=3,当时,又DAE=BAC,ADEABC,ADE=B,DEBC,而根据选项A、B、C的条件都不能推出DEBC,故选D
12、6、B【解析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得【详解】解:原式=(-)=,故选B【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则7、D【解析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1a10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.81010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.8、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时
13、,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】180000=1.8105,故选A【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、A【解析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.10、D【解析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DA
14、B=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键11、C【解析】对于一元二次方程a+bx+c=0,当=-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式12、B【解析】根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义数据x1、x2、xn的加权平均数:(其中w1、w2、w
15、n分别为x1、x2、xn的权数).一组数据中出现次数最多的数据叫做众数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数二、填空题:(本大题共6个小题,每小题4分,共24分)13、0x4【解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y5时,x的取值范围为0x4.故答案为0x4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握14、4【解析】利用交
16、点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.【详解】把点(2,m)代入反比例函数和正比例函数中得,则.【点睛】本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.15、1.【解析】试题解析:原二次根式有意义,x-30,3-x0,x=3,y=4,x+y=1考点:二次根式有意义的条件16、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17
17、、1.1【解析】求出EC,根据菱形的性质得出ADBC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可【详解】DE=1,DC=3,EC=3-1=2,四边形ABCD是菱形,ADBC,DEFCEB,DF=1.1,故答案为1.1【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明DEFCEB,然后根据相似三角形的性质可求解.18、a3【解析】试题解析:x5x2=x3.考点:同底数幂的除法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2)1x0或x1(3)四边形OABC是平行四边形;理由见解析【解析】(1)设反比例函数
18、的解析式为(k0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CBOA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k0)A(m,2)在y=2x上,2=2m,解得m=1A(1,2)又点A在上,解得k=2,反比例函数的解析式为(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为1x0或x1(3)四边形OABC是菱形证明如下: A(1,2),由题意知:CBOA且CB=,CB=OA四边形OABC是平行四
19、边形C(2,n)在上,C(2,1)OC=OA平行四边形OABC是菱形20、(1)m1;(2)3m1【解析】试题分析:(1)根据判别式的意义得到=(-6)2-1(2m+1)0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x220得到2(2m+1)+620,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围试题解析:(1)根据题意得(6)21(2m1)0, 解得m1; (2)根据题意得x1x26,x1x22m1, 而2x1x2x1x220,所以2(2m1)620, 解得m3,而m1,所以m的范围为3m121、(1),;(2)P
20、,【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,点A的坐标为(
21、1,3)把点A(1,3)代入反比例函数y=,得:3=k,反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,点B的坐标为(3,1)(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示点B、D关于x轴对称,点B的坐标为(3,1),点D的坐标为(3,- 1)设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,直线AD的解析式为y=-2x+1令y=-2x+1中y=0,则-2x+1=0,解得:x=,点P的坐标为(,0)SPAB=SABD-SPBD=BD(xB-xA)-BD(xB-xP)=1-(-1)(3-1)-1
22、-(-1)(3-)=考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题22、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA
23、= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识23、 (1) (2) 【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2)当时,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得; 由知,分两种情况画出图形进行讨论即可得. 【详解】(1),x=2时,y=1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y=,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y=4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y=0,此时P(
24、0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)当时,此时矩形上的所有点都在抛物线的下方,; 由,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF=4,解得 t=, 故答案为 【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.24、见解析【解析】试题分析:依据题意,可通过证ABCEFD来得出AB=EF的结论,两三角形中,已知的条件有ABEF即B=F,A=E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.证明:ABEF,B=F又BD=CF,BC=FD在AB
25、C与EFD中,ABCEFD(AAS),AB=EF25、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆. 【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:当AODBPC时,根据相似三角形性质得,解得:a= 3(舍去);AODCPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;(3)能;连接B
26、D,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)y=(x-a)(x-3)(0a3)与x轴交于点A、B(点A在点B的左侧),A(a,0),B(3,0),当x=0时,y=3a,D(0,3a);(2)A(a,0),B(3,0),D(0,3a).对称轴x=,AO=a,OD=3a,当x= 时,y=- ,C(,-),PB=3-=,PC=,当AODBPC时,即 ,解得:a= 3(舍去);AODCPB,即 ,解得:a1=3(舍),a2= .综上所述:a的值为;(3)能;连接BD
27、,取BD中点M,D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,MC=MB, ,化简得:a4-14a2+45=0,(a2-5)(a2-9)=0,a2=5或a2=9,a1=,a2=-,a3=3(舍),a4=-3(舍),0a3,a=,当a=时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.26、详见解析【解析】利用 证明 即可解决问题【详解】证明:是线段的中点在和中,【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型27、见解析;【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案【详解】画树状图得:共有12种等可能的结果、;在所有12种等可能结果中,在函数的图象上的有、这3种结果,点在函数的图象上的概率为【点睛】本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比