2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc

上传人:茅**** 文档编号:87799618 上传时间:2023-04-17 格式:DOC 页数:17 大小:697KB
返回 下载 相关 举报
2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,在正方形网格中建立平面直角坐标系,若,则点C的坐标为( )ABCD2下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b23已知反比例函数y=的图象在一、三象限,那么直线y=kxk不经过第()象限A一B二C三D四4甲、乙两人在直线跑道上同起点、同终点、

2、同方向匀速跑步500m,先到终点的人原地休息已知甲先出发2s在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:a8;b92;c1其中正确的是( )AB仅有C仅有D仅有5抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差6若正比例函数ykx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()AB3CD37如图,平行四边形ABCD的顶点A、B、D在O上,顶点C

3、在O直径BE上,连结AE,若E=36,则ADC的度数是( )A44B53C72D548某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)9如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()ABCD10如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5cmB12cmC16cmD20cm二、填空题(本大

4、题共6个小题,每小题3分,共18分)11从-5,-,-,-1,0,2,这七个数中随机抽取一个数,恰好为负整数的概率为_12如图所示,矩形ABCD的顶点D在反比例函数(x0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,BCE的面积是6,则k=_13如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC5,CD8,则AE_14(11湖州)如图,已知A、B是反比例函数(k0,x0)图象上的两点,BCx轴,交y轴于点C动点P从坐标原点O出发,沿OABC(图中“”所示路线)匀速运动,终点为C过P作PMx轴,PNy轴,垂足分别为M、N设四边形OMPN的面积为S,P点运

5、动时间为t,则S关于t的函数图象大致为15如图,ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G若AD=DF=FB,则四边形DFGE的面积为_16分解因:=_三、解答题(共8题,共72分)17(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.18(8分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成

6、绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定19(8分)如图,AB是半径为2的O的直径,直线l与AB所在直线垂直,垂足为C,OC3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点(1)当A30时,MN的长是 ;(2)求证:MCCN是定值;(3)MN是否存在最大或最小值,若存

7、在,请写出相应的最值,若不存在,请说明理由;(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由20(8分)在ABC中,ABAC,以AB为直径的O交AC于点E,交BC于点D,P为AC延长线上一点,且PBCBAC,连接DE,BE(1)求证:BP是O的切线;(2)若sinPBC,AB10,求BP的长21(8分)计算:(1-n)0-|3-2 |+(- )-1+4cos30.22(10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,

8、于是每只降价0.1(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?23(12分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3)过点A(5,0)的直线y=

9、kx+b与y轴于点C,且BD=OC,tanOAC=(1)求反比例函数y=和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求BMC的度数24黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增

10、长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据A点坐标即可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,-1)故选:C【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型2、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选

11、项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键3、B【解析】根据反比例函数的性质得k0,然后根据一次函数的进行判断直线y=kx-k不经过的象限【详解】反比例函数y=的图象在一、三象限,k0,直线y=kxk经过第一、三、四象限,即不经过第二象限故选:B【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数与一次函数的性质4、A【解析】解:乙出发时甲行了2秒,

12、相距8m,甲的速度为8/24m/ s100秒时乙开始休息乙的速度是500/1005m/ sa秒后甲乙相遇,a8/(54)8秒因此正确100秒时乙到达终点,甲走了4(1002)408 m,b50040892 m 因此正确甲走到终点一共需耗时500/4125 s,c12521 s 因此正确终上所述,结论皆正确故选A5、A【解析】7人成绩的中位数是第4名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,主

13、要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.6、B【解析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=1,再利用正比例函数的性质可得出k=-1,此题得解【详解】设该点的坐标为(a,b),则|b|1|a|,点(a,b)在正比例函数ykx的图象上,k1又y值随着x值的增大而减小,k1故选:B【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=1是解题的关键7、D【解析】根据直径所对的圆周角为直角可得BAE=90,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直

14、径所对的圆周角为直角可得BAE=90,根据E=36可得B=54,根据平行四边形的性质可得ADC=B=54.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.8、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-23=-6,而2(-3)=-6,(-3)(-3)=9,23=6,-46=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,

15、k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k9、D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1故选D【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键10、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于

16、F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:【详解】 这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:故答案为【点睛】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键12、-1

17、【解析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据BCE的面积是6,得出BCOE=1,最后根据ABOE,得出,即BCEO=ABCO,求得ab的值即可【详解】设D(a,b),则CO=-a,CD=AB=b,矩形ABCD的顶点D在反比例函数y=(x0)的图象上,k=ab,BCE的面积是6,BCOE=6,即BCOE=1,ABOE,即BCEO=ABCO,1=b(-a),即ab=-1,k=-1,故答案为-1【点睛】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力解题的关键是将BCE的面积与点D的坐标联

18、系在一起,体现了数形结合的思想方法13、2【解析】试题解析:AB为圆O的直径,弦CDAB,垂足为点E.在直角OCE中, 则AE=OAOE=53=2.故答案为2.14、A【解析】试题分析:当点P在OA上运动时,OP=t,S=OMPM=tcostsin,角度固定,因此S是以y轴为对称轴的二次函数,开口向上;当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误故选A考点:1.反比例函数综合题;2.动点问题的函数图象15、1【解析】先根据题意可证得ABCADE,ABCAFG,再根据ABC的面积为6分别求出AD

19、E与AFG的面积,则四边形DFGE的面积=SAFG-SADE.【详解】解:DEBC,,ADEABC,AD=DF=FB,=()1,即=()1,SADE=;FGBC,AFGABC,=()1,即=()1,SAFG=;S四边形DFGE= SAFG- SADE=-=1.故答案为:1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.16、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)三、解答题(共8题

20、,共72分)17、112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=302x与自变量x的取值范围为6x11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值试题解析:解:(1)y=302x(6x11)(2)设矩形苗圃园的面积为S,则S=xy=x(302x)=2x2+30x,S=2(x7.1)2+112.1,由(1)知,6x11,当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1点睛:此题考查了二次函数的实际应用问题解题

21、的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可18、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好

22、;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.19、(1);(2)MCNC5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为【解析】(1)由题意得AOOB2、OC3、AC5、BC1,根据MCACtanA 、CN可得答案;(2)证ACMNCB得,由此即可求得答案;(3)设MCa、NCb,由(2)知ab5,由P是圆上异于A、B的动点知a0,可得b(a0),根据反比例函数的性质得a+b不存在最大值,当ab时,a+b最小,

23、据此求解可得;(4)设该圆与AC的交点为D,连接DM、DN,证MDCDNC得,即MCNCDC25,即DC,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为【详解】(1)如图所示,根据题意知,AOOB2、OC3,则ACOA+OC5,BCOCOB1,AC直线l,ACMACN90,MCACtanA5,ABPNBC,BNCA30,CN,则MNMC+CN+,故答案为:;(2)ACMNCB90,ABNC,ACMNCB,即MCNCACBC515;(3)设MCa、NCb,由(2)知ab5,P是圆上异于A、B的动点,a0,b(a0),根据反比例函数的性质知,a+b不存在最大值,当ab时,

24、a+b最小,由ab得a,解之得a(负值舍去),此时b,此时a+b的最小值为2;(4)如图,设该圆与AC的交点为D,连接DM、DN,MN为直径,MDN90,则MDC+NDC90,DCMDCN90,MDC+DMC90,NDCDMC,则MDCDNC,即MCNCDC2,由(2)知MCNC5,DC25,DC,以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点20、(1)证明见解析;(2) 【解析】(1)连接AD,求出PBCABC,求出ABP90,根据切线的判定得出即可;(2)

25、解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可【详解】解:(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC,AD平分BAC,BAD=BAC,ADB=90,BAD+ABD=90,PBC=BAC,PBC+ABD=90,ABP=90,即ABBP,PB是O的切线;(2)PBC=BAD,sinPBC=sinBAD,sinPBC=,AB=10,BD=2,由勾股定理得:AD=4,BC=2BD=4,由三角形面积公式得:ADBC=BEAC,44=BE10,BE=8,在RtABE中,由勾股定理得:AE=6,BAE=

26、BAP,AEB=ABP=90,ABEAPB,=,PB=【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键21、1【解析】根据实数的混合计算,先把各数化简再进行合并.【详解】原式=1+3-2-3+2=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.22、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因

27、此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,

28、利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论23、(1),(2)ACCD(3)BMC=41【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明OACBCD,再由角的和差可求得OAC+BCA=90,可证得ACCD;(3)连接A

29、D,可证得四边形AEBD为平行四边形,可得出ACD为等腰直角三角形,则可求得答案本题解析:(1)A(1,0),OA=1tanOAC=,解得OC=2,C(0,2),BD=OC=2,B(0,3),BDx轴,D(2,3),m=23=6,y=,设直线AC关系式为y=kx+b,过A(1,0),C(0,2),解得,y=x2;(2)B(0,3),C(0,2),BC=1=OA,在OAC和BCD中,OACBCD(SAS),AC=CD,OAC=BCD,BCD+BCA=OAC+BCA=90,ACCD;(3)BMC=41如图,连接AD,AE=OC,BD=OC,AE=BD,BDx轴,四边形AEBD为平行四边形,ADBM

30、,BMC=DAC,OACBCD,AC=CD,ACCD,ACD为等腰直角三角形,BMC=DAC=4124、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数每间寝室可住人数

31、,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁