《2022-2023学年甘肃省兰州市西固区中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年甘肃省兰州市西固区中考数学押题试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD2在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,15
2、8,170,则由这组数据得到的结论错误的是()A平均数为160B中位数为158C众数为158D方差为20.33已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A1B2C3D44计算的值为( )AB-4CD-25如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD6cos30的值为( )A1BCD7已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )ABCD8某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时
3、)33.544.5人数1132A中位数是4,众数是4B中位数是3.5,众数是4C平均数是3.5,众数是4D平均数是4,众数是3.59某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( )ABCD10如图,ABCD,FEDB,垂足为E,1=60,则2的度数是()A60B50C40D30二、填空题(共7小题,每小题3分,满分21分)11将一副直角三角板如图放置,使含30角的三角板的直角边和含45角的三角板一条直角边在同一条直线上,则1的度数为_ 12如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,
4、EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_13在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为_14已知,那么_15如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_.16如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_17RtABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在RtABC的边上,当矩形DEFG的面积最大时,其对角线的长为_三、解答题(共7小题,满分69分)18(10分)(1)计算:(2)2+(+1)24cos60;(2)化简:(1)19(5
5、分)如图,在ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB2,AE2,求BAD的大小20(8分)计算:(1-n)0-|3-2 |+(- )-1+4cos30.21(10分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“
6、基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数22(10分)先化简代数式,再从2,2,0三个数中选一个恰当的数作为a的值代入求值23(12分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过
7、点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标24(14分)如图,在ABC中,ABAC,AE是BAC的平分线,ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F(1)求证:AE为O的切线;(2)当BC=4,AC=6时,求O的半径;(3)在(2)的条件下,求线段BG的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式
8、,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积2、D【解析】解:A平均数为(158+160+154+158+170)5=160,正确,故本选项不符合题意;B按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为1
9、58,故中位数为158,正确,故本选项不符合题意;C数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D这组数据的方差是S2=(154160)2+2(158160)2+(160160)2+(170160)2=28.8,错误,故本选项符合题意故选D点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大3、B【解析】先由平均数是3可得x的值,再结合方差公式计算【详解】数据1、2、3、x、5的平均数是3,=3,解得:x=4,则数据为1、2、3、4、5,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2,故选B【点睛】本题主
10、要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义4、C【解析】根据二次根式的运算法则即可求出答案【详解】原式=-3=-2,故选C【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型5、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.6、D【解析】cos30=故选D7、D【解析】试题分析:D选项中作的是AB的中垂线,PA=PB,PB+PC=B
11、C,PA+PC=BC故选D考点:作图复杂作图8、A【解析】根据众数和中位数的概念求解【详解】这组数据中4出现的次数最多,众数为4,共有7个人,第4个人的劳动时间为中位数,所以中位数为4,故选A【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错9、B【解析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的
12、增长率为x,则2015年的绿化面积为300(1x),2016年的绿化面积为300(1x)(1x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1x)2363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.10、D【解析】由EFBD,1=60,结合三角形内角和为180即可求出D的度数,再由“两直线平行,同位角相等”即可得出结论【详解】解:在DEF中,1=60,DEF=90,D=180-DEF-1=30ABCD,2=D=30故选D【点睛】本题考查平行线的性质以及三角形内角和为180,解题关键是根据平行线的性质,找出相等、互余或互补的
13、角二、填空题(共7小题,每小题3分,满分21分)11、75【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90,ACB+DFE=180,ACDF,2=A=45,1=2+D=45+30=75故答案为:75【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出2=A=45是解题的关键12、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到E
14、F的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合13、或【解析】设直线y=2x-1与x轴交点为
15、C,与y轴交点为A,过点A作AD直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出BAD=ACO,再利用ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD直线y=2x-b于点D,如图所示直线y=2x-1与x轴交点为C,与y轴交点为A,点A(0,-1),点C(,0),OA=1,OC=,AC=,cosACO=BAD与CAO互余,ACO与CAO互余,BAD=ACOAD=3,cosBAD=,AB=3直线y=2x-b与y轴的交点为B(0,-b),AB=
16、|-b-(-1)|=3,解得:b=1-3或b=1+3故答案为1+3或1-3【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键14、【解析】根据比例的性质,设x5a,则y2a,代入原式即可求解.【详解】解:,设x5a,则y2a,那么故答案为:【点睛】本题主要考查了比例的性质,根据比例式用同一个未知数得出的值进而求解是解题关键15、xx75.【解析】试题解析:设长方形墙砖的长为x厘米,可得:xx75.16、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3
17、=1故答案是:1.17、或【解析】分两种情形画出图形分别求解即可解决问题【详解】情况1:如图1中,四边形DEFG是ABC的内接矩形,设DE=CF=x,则BF=3-x EFAC,=EF=(3-x)S矩形DEFG=x(3-x)=(x-)2+3x=时,矩形的面积最大,最大值为3,此时对角线=情况2:如图2中,四边形DEFG是ABC的内接矩形,设DE=GF=x,作CHAB于H,交DG于T则CH=,CT=x,DGAB,CDGCAB,DG=5x,S矩形DEFG=x(5x)=(x)2+3,x=时,矩形的面积最大为3,此时对角线= 矩形面积的最大值为3,此时对角线的长为或故答案为或【点睛】本题考查相似三角形的
18、应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题三、解答题(共7小题,满分69分)18、(1)5(2) 【解析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=42+2+2+14=72=5;(2)原式=【点睛】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.19、 (1)见解析;(2) 60.【解析】(1)先证明AEBAEF,推出EAB=EAF,由ADBC,推出EAF=AEB=EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G根据菱形的性质得出A
19、B=2,AG=AE=,BAF=2BAE,AEBF然后解直角ABG,求出BAG=30,那么BAF=2BAE=60【详解】解:(1)在AEB和AEF中,AEBAEF,EAB=EAF,ADBC,EAF=AEB=EAB,BE=AB=AFAFBE,四边形ABEF是平行四边形,AB=BE,四边形ABEF是菱形;(2)连结BF,交AE于GAB=AF=2,GA=AE=2=,在RtAGB中,cosBAE=,BAG=30,BAF=2BAG=60,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.20、1【解析】根据实数的混合计算,先把各数化简再进行合并
20、.【详解】原式=1+3-2-3+2=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.21、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:360=90;故答案为60,90;(2)60153010=5
21、;补全条形统计图得:(3)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.22、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和2.试题解析:原式=当a=0时,原式=2.考点:分式的化简求值.23、(1)y=x2+x+2;(2)y=2x+2;(3)线段BP与线段AE的关系是相互垂直;点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,
22、4)【解析】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM=PM即可求解【详解】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,解得:a=,b=,故函数的表达式为y=x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)E是点B关于y轴的对称点,E坐标为(3
23、,4),则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,AEBC,而EPBC,BPAE而BP=AE,线段BP与线段AE的关系是相互垂直;设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MMBC,kMM=,直线MM的方程为:y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),由题意得:PM=PM=2m,PM2=42+m2=(2m)2,此式不成立,或PM2=m2+(2m+2)2=(2m)2,解得:m=42,故点P的坐标为(42,84);当P点在线段BE上时,点P坐标为(m,4),点M坐标为(m,2),则PM=6,直线MM的
24、方程不变,为y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),PM2=m2+(6+m)2=(2m)2,解得:m=0,或;或PM2=42+42=(6)2,无解;故点P的坐标为(0,4)或(,4);综上所述:点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系24、(1)证明见解析;(2);(3)1. 【解析】(1)连接OM,如图1,先证明OMBC,再根据等腰三角形的性质判断AEBC,则OMAE
25、,然后根据切线的判定定理得到AE为O的切线;(2)设O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明AOMABE,则利用相似比得到,然后解关于r的方程即可;(3)作OHBE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1【详解】解:(1)证明:连接OM,如图1,BM是ABC的平分线,OBM=CBM,OB=OM,OBM=OMB,CBM=OMB,OMBC,AB=AC,AE是BAC的平分线,AEBC,OMAE,AE为O的切线;(2)解:设O的半径为r,AB=AC=6,AE是BAC的平分线,BE=CE=BC=2,OMBE,AOMABE,即,解得r=,即设O的半径为;(3)解:作OHBE于H,如图,OMEM,MEBE,四边形OHEM为矩形,HE=OM=,BH=BEHE=2=,OHBG,BH=HG=,BG=2BH=1