《2022-2023学年湖南省江华瑶族自治县重点中学中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖南省江华瑶族自治县重点中学中考四模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知二次函数y=(x+m)2n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )ABCD2二次函数yax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;3b+2c0;4a+c2b;m(am+b)+ba(m1)
2、,其中结论正确的个数是()A1B2C3D43关于的方程有实数根,则满足( )AB且C且D4已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D55在0,2,3,四个数中,最小的数是()A0B2C3D6小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A小明不是胜就是输,所以小明胜的概率为B小明胜的概率是,所以输的概率是C两人出相同手势的概率为D小明胜的概率和小亮胜的概率一样7如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;
3、BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个8如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:19某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为( )A6,5B6,6C5,5D5,610如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数其中主视图相同的是( )A仅有甲和乙相同B仅有甲和丙相同C仅有乙和丙相同D甲、乙、丙都相同二、填空题(本大题
4、共6个小题,每小题3分,共18分)11如图,在梯形ABCD中,ABCD,C=90,BC=CD=4,AD=2 ,若,用、表示=_12如图,在正方形中,对角线与相交于点,为上一点,为的中点若的周长为18,则的长为_13如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D处,点C的对应点C的坐标为_142018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如
5、图所示,从中可知出境游东南亚地区的游客约有_万人15函数y的自变量x的取值范围为_16如图,在四边形纸片ABCD中,ABBC,ADCD,AC90,B150.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD_.三、解答题(共8题,共72分)17(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率18(8分)如图,在RtABC中,C=90,翻折C,使点C落在斜边AB上某一点D处
6、,折痕为EF(点E、F分别在边AC、BC上)若CEF与ABC相似当AC=BC=2时,AD的长为 ;当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,CEF与ABC相似吗?请说明理由19(8分) “知识改变命运,科技繁荣祖国”在举办一届全市科技运动会上下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ;(2)并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获
7、奖人数约是多少人?20(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必说明理由21(8分)如图,一次函数ykx+b的图象与坐标轴分别交于A、B两点,与反比例函数y的图象在第一象限的交点为C,CDx轴于D,若OB1,OD6,AOB的
8、面积为1求一次函数与反比例函数的表达式;当x0时,比较kx+b与的大小22(10分)先化简代数式:,再代入一个你喜欢的数求值.23(12分)如图,在ABCD中,AEBC交边BC于点E,点F为边CD上一点,且DFBE.过点F作FGCD,交边AD于点G.求证:DGDC24如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CPx轴,垂足为点P,连接AD、BC(1)求点A、B、D的坐标;(2)若AOD与BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.参考答
9、案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:观察二次函数图象可知: 一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.故选D.2、C【解析】试题解析:图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b24ac0,4acb20,正确;=1,b=2a,a+b+c0,b+b+c0,3b+2c0,是正确;当x=2时,y0,4a2b+c0,4a+c2b,错误;由图象可知x=1时该二次函数取得最大值,ab+cam2+bm+c(m1)m(am+b)ab故正确正确的有三个,故选C考点:二次函数图象与系数的关系【详解】请在此输入详解!
10、3、A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义4、B【解析】根据关于x的方程x2+3x+a=
11、0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B5、B【解析】根据实数比较大小的法则进行比较即可【详解】在这四个数中30,0,-20,-2最小故选B【点睛】本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小6、D【解析】利用概率公式,一一判断即可解决问题.【详解】A、错误小明还有可能是平;B、错误、小明胜的概率是,所以输的概率是也是;C、错误两人出相同手势的概率为;D、正确小明胜的概率和小
12、亮胜的概率一样,概率都是;故选D【点睛】本题考查列表法、树状图等知识用到的知识点为:概率=所求情况数与总情况数之比7、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OH
13、D=ODH,OH=OD,OE=OD=OH,故正确;EBH=9067.5=22.5,EBH=OHD,又BE=DH,AEB=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质8、B【解析】根据中位线定理得到DEBC,DE=BC,从而判定ADEABC
14、,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,ADE的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查三角形中位线定理及相似三角形的判定与性质9、A【解析】根据众数、中位数的定义分别进行解答即可【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选A【点睛】本题考查了众数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从
15、大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数10、B【解析】试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙考点:由三视图判断几何体;简单组合体的三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】过点A作AEDC,利用向量知识解题.【详解】解:过点A作AEDC于E,AEDC,BCDC,AEBC,又ABCD,四边形AECB是
16、矩形,ABEC,AEBC4,DE=2,AB=EC=2=DC,故答案为.【点睛】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.12、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中13、(2,1)【解析】由已知条件得到AD=AD=,AO=AB=1,根据勾股定理得到OD=1,
17、于是得到结论【详解】解: AD=AD=,AO=AB=1,OD=1,CD=2,CDAB,C(2,1),故答案为:(2,1)【点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键14、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用15、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围16、或 【解析】根
18、据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+【详解】如图,当四边形ABCE为平行四边形时,作AEBC,延长AE交CD于点N,过点B作BTEC于点T.ABBC,四边形ABCE是菱形BADBCD90,ABC150,ADC30,BANBCE30,NAD60,AND90.设BTx,则CNx,BCEC2x.四边形ABCE面积为2,ECBT2,即2xx2,解得x1,AEEC2,EN ,ANAEEN2 ,CDAD2AN42.如图,当四边形BEDF是平行四边形,BEBF,平行四边形BEDF是菱形AC90,ABC150,ADBBDC15.BEDE,EBDADB15,AEB30.设ABy,则DEBE
19、2y,AEy.四边形BEDF的面积为2,ABDE2,即2y22,解得y1,AE,DE2,ADAEDE2.综上所述,CD的值为42或2.【点睛】考核知识点:平行四边形的性质,菱形判定和性质三、解答题(共8题,共72分)17、25%【解析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=25%,x2=(不符合题意,舍去)答:这两年中获奖人次的年
20、平均年增长率为25%18、解:(1)或(2)当点D是AB的中点时,CEF与ABC相似理由见解析.【解析】(1)当AC=BC=2时,ABC为等腰直角三角形;若CEF与ABC相似,分两种情况:若CE:CF=3:4,如图1所示,此时EFAB,CD为AB边上的高;若CF:CE=3:4,如图2所示由相似三角形角之间的关系,可以推出A=ECD与B=FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,CEF与ABC相似可以推出CFE=A,C=C,从而可以证明两个三角形相似【详解】(1)若CEF与ABC相似当AC=BC=2时,ABC为等腰直角三角形,如答图1所示,此时D为AB边中
21、点,AD=AC=当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,CE:CF=AC:BC,EFBC由折叠性质可知,CDEF,CDAB,即此时CD为AB边上的高在RtABC中,AC=3,BC=4,BC=1cosA=AD=ACcosA=3=(II)若CF:CE=3:4,如答图3所示CEFCAB,CEF=B由折叠性质可知,CEF+ECD=90又A+B=90,A=ECD,AD=CD同理可得:B=FCD,CD=BDAD=BD此时AD=AB=1=综上所述,当AC=3,BC=4时,AD的长为或(2)当点D是AB的中点时,CEF与CBA相似理由如下:如图所示,连接CD,与EF交于点
22、QCD是RtABC的中线CD=DB=AB,DCB=B由折叠性质可知,CQF=DQF=90,DCB+CFE=90,B+A=90,CFE=A,又ACB=ACB,CEFCBA19、(1)24,120;(2)见解析;(3)1000人【解析】(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果【详解】解:(1)该校参加航模比赛的总人数是625%24(人),则参加空模人数为24(6+4+6)8(人),空模所在扇形的圆心角的度数是360120,故答案为:2
23、4,120;(2)补全条形统计图如下:(3)估算今年参加航模比赛的获奖人数约是25001000(人)【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键20、(1)见解析;(1)30或150,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90即可;(1)在旋转过程中,OAG成为直角有两种情况:由0增大到90过程中,当OAG=90时,=30,由90增大到180过程中,当OAG=90时,=150;当旋转到A、O、F在一条直线上时,AF的长最大,AF=AO+OF=+1,此时=315【详解】(1)
24、如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90,GAO+DEO=90,AHE=90,即DEAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG=90时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30,OAOD,OAAG,ODAG,DOG=AGO=30,即=30;()由90增大到180过程中,当OAG=90时,同理可求BOG=30,=18030=150.综上所述,当OAG=90时,=30或150.如图3,当旋转到A.O
25、、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45,此时=315.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用21、 (1) ,;(2) 当0x6时,kx+b,当x6时,kx+b【解析】(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0x6时,kx+b,当x6时,kx+b【详解
26、】(1)SAOB OAOB1,OA2,点A的坐标是(0,2),B(1,0) yx2当x6时,y 622,C(6,2)m263y(2)由C(6,2),观察图象可知:当0x6时,kx+b,当x6时,kx+b【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标22、【解析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算.【详解】解:原式.使原分式有意义的值可取2,当时,原式.【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.23、证明见解析.【解析】试题分析:先由平行四边形的性质得到B=D,AB=CD,再利用垂直的定义得到AEB=GFD=90,根据“ASA”
27、判定AEBGFD,从而得到AB=DC,所以有DG=DC试题解析:四边形ABCD为平行四边形,B=D,AB=CD,AEBC,FGCD,AEB=GFD=90,在AEB和GFD中,B=D,BE=DF,AEB=GFD,AEBGFD,AB=DC,DG=DC考点:1全等三角形的判定与性质;2平行四边形的性质24、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆. 【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对
28、称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:当AODBPC时,根据相似三角形性质得,解得:a= 3(舍去);AODCPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)y=(x-a)(x-3)(0a3)与x轴交于点A、B(点A在点B的左侧),A(a,0),B(3,0),当x=0时,y=3a,D(0,3a);(2)A(a,0),B(3,0
29、),D(0,3a).对称轴x=,AO=a,OD=3a,当x= 时,y=- ,C(,-),PB=3-=,PC=,当AODBPC时,即 ,解得:a= 3(舍去);AODCPB,即 ,解得:a1=3(舍),a2= .综上所述:a的值为;(3)能;连接BD,取BD中点M,D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,MC=MB, ,化简得:a4-14a2+45=0,(a2-5)(a2-9)=0,a2=5或a2=9,a1=,a2=-,a3=3(舍),a4=-3(舍),0a3,a=,当a=时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.