2022-2023学年湖北省襄阳襄州区五校联考中考数学猜题卷含解析.doc

上传人:茅**** 文档编号:87799387 上传时间:2023-04-17 格式:DOC 页数:19 大小:944.50KB
返回 下载 相关 举报
2022-2023学年湖北省襄阳襄州区五校联考中考数学猜题卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年湖北省襄阳襄州区五校联考中考数学猜题卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年湖北省襄阳襄州区五校联考中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省襄阳襄州区五校联考中考数学猜题卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1若a+|a|=0,则等于()A22aB2a2C2D22关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-3实数a,b在数轴上对应的点的位

2、置如图所示,则正确的结论是()Aa+b0Ba|2|CbD4如图,在ABC中,EFBC,AB=3AE,若S四边形BCFE=16,则SABC=()A16B18C20D245如图,要使ABCD成为矩形,需添加的条件是()AAB=BCBABC=90CACBDD1=26某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D517如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若ADE125,则DBC的度数为( )A125B75C65D558下列美丽的图案中,不是轴对称图形的是( )AB

3、CD9如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过ABC区域(包括边界),则a的取值范围是()A或B或C或D10如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将BDE沿DE翻折至BDE处,点B恰好落在正比例函数y=kx图象上,则k的值是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11王经理到襄阳出差带回襄阳特产孔明菜若干袋,分给朋友们品尝如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_

4、袋12某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和若甲产品每袋售价72元,则利润率为20%某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_元13一元二次方程x1x21的根是_14如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)

5、为_.15如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 16分解因式:2a44a2+2_三、解答题(共8题,共72分)17(8分)如图,A=B=30(1)尺规作图:过点C作CDAC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BDAB18(8分)在矩形ABCD中,AB6,AD8,点E是边AD上一点,EMEC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项如图1,求证:ANEDCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果AEC与以点E、M、N

6、为顶点所组成的三角形相似,求DE的长19(8分)问题探究(1)如图1,ABC和DEC均为等腰直角三角形,且BAC=CDE=90,AB=AC=3,DE=CD=1,连接AD、BE,求的值;(2)如图2,在RtABC中,ACB=90,B=30,BC=4,过点A作AMAB,点P是射线AM上一动点,连接CP,做CQCP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,BAD=135,ADC=90,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值图320(8分)某工厂计划生产,两种产品共10件,其生产成本和利

7、润如下表种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?21(8分)解不等式组: ,并写出它的所有整数解22(10分)计算:(2)2+2018023(12分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1如图2,正方形ABCD顶点处各有一个圈跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长如:

8、若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;设游戏者从圈A起跳(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面

9、的高度y(米)与登山时间x(分)之间的函数关系式登山多长时间时,甲、乙两人距地面的高度差为50米?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】直接利用二次根式的性质化简得出答案【详解】a+|a|=0,|a|=-a,则a0,故原式=2-a-a=2-2a故选A【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键2、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变

10、量指数为1,当k0时,y随x的增大而减小3、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,故C不符合题意;D.0,故D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键4、B【解析】【分析】由EFBC,可证明AEFABC,利用相似三角形的性质即可求出SABC的值【详解】EFBC,AEFABC,AB=3AE,AE:AB=1:3,SAEF:SABC=1:9,设SAEF=x,S四边形BCFE=16,解得:x=2,SABC=18,故选B【点睛】本题考查了相似三角形的判

11、定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.5、B【解析】根据一个角是90度的平行四边形是矩形进行选择即可【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B【点睛】本题主要应用的知识点为:矩形的判定 对角线相等且相互平分的四边形为矩形一个角是90度的平行四边形是矩形6、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜

12、花盆数为故选C.7、D【解析】延长CB,根据平行线的性质求得1的度数,则DBC即可求得【详解】延长CB,延长CB,ADCB,1=ADE=145,DBC=1801=180125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.8、A【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、B【解析】试题解析:如图所示:分

13、两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值范围是: 当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过ABC区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.10、B【解析】根据矩形的性质得到,CBx轴,ABy轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB,交ED于F,过B作BGBC于G,根据轴对称的性质得到BF=BF,BBED求得BB,设EG=x,根据勾股定理即可得到结论【详解】解:矩形OABC,CBx轴,ABy

14、轴点B坐标为(6,1),D的横坐标为6,E的纵坐标为1D,E在反比例函数的图象上,D(6,1),E(,1),BE=6=,BD=11=3,ED=连接BB,交ED于F,过B作BGBC于GB,B关于ED对称,BF=BF,BBED,BFED=BEBD,即BF=3,BF=,BB=设EG=x,则BG=xBB2BG2=BG2=EB2GE2,x=,EG=,CG=,BG=,B(,),k=故选B【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、33.【解析】试题分析:设品尝孔明菜的朋友有x人,依题意得,5x36x3

15、,解得x6,所以孔明菜有5x333袋.考点:一元一次方程的应用.12、5750【解析】根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn20n250,最后设生产甲乙产品的实际成本为W元,即可解答【详解】甲产品每袋售价72元,则利润率为20%设甲产品的成本价格为b元, 20%,b60,甲产品的成本价格60元,1.5kgA原料与1.5kgB原料的成本和60元,A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40x)元,生产甲产品m袋,乙产品n袋,

16、根据题意得: ,xn20n250,设生产甲乙产品的实际成本为W元,则有W60m+40n+xn,W60m+40n+20n25060(m+n)250,m+n100,W6250;生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格13、x0或x1【解析】利用因式分解法求解可得【详解】(x1)(x+1)(x1)=0,(x1)(1x1)=0,即x(x1)=0,则x=0或x=1,故答案为:x=0或x=1【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结

17、合方程的特点选择合适、简便的方法是解题的关键14、250【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=5210=250(立方单位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积高15、11.【解析】试题解析:由折线统计图可知,周一的日温差=8+1=9;周二的日温差=7+1=8;周三的日温差=8+1=9;周四的日温差=9;周五的日

18、温差=135=8;周六的日温差=1571=8;周日的日温差=165=11,这7天中最大的日温差是11考点:1.有理数大小比较;2.有理数的减法16、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式三、解答题(共8题,共72分)17、见解析【解析】(1)利用过直线上一点作直线的垂

19、线确定D点即可得;(2)根据圆周角定理,由ACD=90,根据三角形的内角和和等腰三角形的性质得到DCB=A=30,推出CDBACB,根据相似三角形的性质即可得到结论【详解】(1)如图所示,CD即为所求;(2)CDAC,ACD=90A=B=30,ACB=120DCB=A=30,B=B,CDBACB,BC2=BDAB【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作18、(1)见解析;(2);(1)DE的长分别为或1

20、【解析】(1)由比例中项知,据此可证AMEAEN得AEMANE,再证AEMDCE可得答案;(2)先证ANEEAC,结合ANEDCE得DCEEAC,从而知,据此求得AE8,由(1)得AEMDCE,据此知,求得AM,由求得MN;(1)分ENMEAC和ENMECA两种情况分别求解可得【详解】解:(1)AE是AM和AN的比例中项,AA,AMEAEN, AEMANE,D90,DCEDEC90,EMBC,AEMDEC90,AEMDCE,ANEDCE;(2)AC与NE互相垂直,EACAEN90,BAC90,ANEAEN90,ANEEAC,由(1)得ANEDCE,DCEEAC,tanDCEtanDAC,DCA

21、B6,AD8,DE,AE8,由(1)得AEMDCE,tanAEMtanDCE,AM,AN,MN;(1)NMEMAEAEM,AECDDCE,又MAED90,由(1)得AEMDCE,AECNME,当AEC与以点E、M、N为顶点所组成的三角形相似时ENMEAC,如图2, ANEEAC,由(2)得:DE;ENMECA,如图1,过点E作EHAC,垂足为点H,由(1)得ANEDCE,ECADCE,HEDE,又tanHAE,设DE1x,则HE1x,AH4x,AE5x,又AEDEAD,5x1x8,解得x1,DE1x1,综上所述,DE的长分别为或1【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的

22、判定与性质、三角函数的应用等知识点19、(1);(2);(3)+.【解析】(1)由等腰直角三角形的性质可得BC=3,CE=,ACB=DCE=45,可证ACDBCE,可得;(2)由题意可证点A,点Q,点C,点P四点共圆,可得QAC=QPC,可证ABCPQC,可得,可得当QCAB时,PQ的值最小,即可求PQ的最小值;(3)作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证ABCDEC,可得,且BCE=ACD,可证BCEACD,可得BEC=ADC=90,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值【详解】(1)BAC=CDE=90,AB=

23、AC=3,DE=CD=1,BC=3,CE=,ACB=DCE=45,BCE=ACD,BCE=ACD,ACDBCE,;(2)ACB=90,B=30,BC=4,AC=,AB=2AC=,QAP=QCP=90,点A,点Q,点C,点P四点共圆,QAC=QPC,且ACB=QCP=90,ABCPQC,PQ=QC=QC,当QC的长度最小时,PQ的长度最小,即当QCAB时,PQ的值最小,此时QC=2,PQ的最小值为;(3)如图,作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,ADC=90,AD=CD,CAD=45,BAC=BAD-CAD=90,ABCDEC,DCE=ACB,BCE=A

24、CD,BCEACD,BEC=ADC=90,CE=BC=2,点F是EC中点,DF=EF=CE=,BF=,BDDF+BF=+【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键20、(1)生产产品8件,生产产品2件;(2)有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【解析】(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案【详解】解:(1)设生产种产品件,

25、则生产种产品件,依题意得:,解得: ,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:因为为正整数,故或3;答:共有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键21、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,222、1【解析】分析:首先计算

26、乘方、零次幂和开平方,然后再计算加减即可详解:原式=4+1-6=-1点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质23、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样【解析】(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【详解】(1)共有1种等可能的结果,落回到圈A的只有1种情况,落回到圈A的概率P1=;(2)列表得: 1 2 3 11(1,1)(2,1)(3,1)(1,1)2(1

27、,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),最后落回到圈A的概率P2=,她与嘉嘉落回到圈A的可能性一样【点睛】此题考查了列表法或树状图法求概率注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数24、(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米【解析】(1)根据速度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x

28、2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(300100)20=10(米/分钟),b=1512=30,故答案为10,30;(2)当0x2时,y=15x;当x2时,y=30+103(x2)=30x30,当y=30x30=300时,x=11,乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100(30x30)=50时,解得:x=4,当30x30(10x+100)=50时,解得:x=9,当300(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁