《2022-2023学年江苏省苏州市葛江中学中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省苏州市葛江中学中考适应性考试数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列算式中,结果等于a5的是()Aa2+a3Ba2a3Ca5aD(a2)32如图所示的几何体,上下部分均为圆柱体,其左视图是( )ABCD3反比例函数是y=的图象在()A第一、二象限B第一、三象限C第二、三象限D第二、四象限4将20011999变形正确的是()A200021B20002+1C20002+22000+1D2000222000+15已知反比例函数y,当3x2时,y的取值范围是()A0y1B1y2C2y3D3y26已知反比例函数,下列结论不正确的是()A图象经过点(2,1)B图象在第二、四象限C当x0时,y随着x的增大而
3、增大D当x1时,y27如图,二次函数yax2bxc(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OAOC则下列结论:abc0;acb10;OAOB.其中正确结论的个数是( )A4B3C2D18二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)9下列运算正确的是()ABCD10下列几何体中三视图完全相同的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次
4、都摸到红球的概率是_12如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45,景点B的俯角为30,此时C到地面的距离CD为100米,则两景点A、B间的距离为_米(结果保留根号)13以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BEAC,垂足为E若双曲线y=(x0)经过点D,则OBBE的值为_14因式分解:3x312x=_15矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部
5、分AEF的面积等于_16如图,O中,弦AB、CD相交于点P,若A30,APD70,则B等于_17如图,点A,B在反比例函数(k0)的图象上,ACx轴,BDx轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且BCE的面积是ADE的面积的2倍,则k的值是_三、解答题(共7小题,满分69分)18(10分)如图1,已知抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D在直线l上是否存在点M,使得四边形CDPM是
6、平行四边形?若存在,求出点M的坐标;若不存在,请说明理由(3)如图2,连接BC,PB,PC,设PBC的面积为S求S关于t的函数表达式;求P点到直线BC的距离的最大值,并求出此时点P的坐标19(5分)如图,在平面直角坐标系xOy中,正比例函数yx的图象与一次函数ykxk的图象的交点坐标为A(m,2)(1)求m的值和一次函数的解析式;(2)设一次函数ykxk的图象与y轴交于点B,求AOB的面积;(3)直接写出使函数ykxk的值大于函数yx的值的自变量x的取值范围20(8分)如图是一副创意卡通圆规,图是其平面示意图,OA是支撑臂,OB是旋转臂使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆已知
7、OAOB10cm.(1)当AOB18时,求所作圆的半径(结果精确到0.01cm);(2)保持AOB18不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin90.1564,cos90.9877,sin180.3090,cos180.9511,可使用科学计算器)21(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB
8、=MC,求此时点M的坐标22(10分)如图,港口B位于港口A的南偏东37方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45方向上,这时,E处距离港口A有多远?(参考数据:sin 370.60,cos 370.80,tan 370.75)23(12分)已知关于x的一元二次方程有实数根(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值24(14分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法
9、,求抽出的两张牌中,牌面上的数字都是偶数的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误故选B2、C【解析】试题分析:该几何体上下部分均为圆柱体,其左视图为矩形,故选C考点:简单组合体的三视图3、B【解析】解:反比例函数是y=中,k=20,此函数图象的两个分支分别位于一、三象限故选B4、A【解析】原式变形后,利用平方差公式计算即可得出答案【详解】解:原式=(2000+1)(2000-1)=20002-1,故选A【
10、点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键5、C【解析】分析:由题意易得当3x2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.详解:在中,60,当3x2时函数的图象位于第二象限内,且y随x的增大而增大,当x=3时,y=2,当x=2时,y=3,当3x2时,2y3,故选C点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.6、D【解析】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-20,图象在第二、四象限,故本选项正确;C选项:当x0,且k0,y随x的增大而增大,故本选项正确;D选
11、项:当x0时,y0,故本选项错误故选D7、B【解析】试题分析:由抛物线开口方向得a0,由抛物线的对称轴位置可得b0,由抛物线与y轴的交点位置可得c0,则可对进行判断;根据抛物线与x轴的交点个数得到b24ac0,加上a0,则可对进行判断;利用OA=OC可得到A(c,0),再把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,两边除以c则可对进行判断;设A(x1,0),B(x2,0),则OA=x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a0)的两根,利用根与系数的关系得到x1x2=,于是OAOB=,则可对进行判断解:抛物线开口向下,a0,抛物线的对
12、称轴在y轴的右侧,b0,抛物线与y轴的交点在x轴上方,c0,abc0,所以正确;抛物线与x轴有2个交点,=b24ac0,而a0,0,所以错误;C(0,c),OA=OC,A(c,0),把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,acb+1=0,所以正确;设A(x1,0),B(x2,0),二次函数y=ax2+bx+c(a0)的图象与x轴交于A,B两点,x1和x2是方程ax2+bx+c=0(a0)的两根,x1x2=,OAOB=,所以正确故选B考点:二次函数图象与系数的关系8、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线
13、,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质9、D【解析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(ab)2=a22ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可【详解】解:A、a-(b+c)=a-b-ca-b+c,故原题计算错误;B、(x+1)2=x2+2x+1x+1,故原题计算错误;C、(-a)3=,故原题计算错误;D、2a23a3
14、=6a5,故原题计算正确;故选:D【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则10、A【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体二、填空题(共7小题,每小题3分,满分21分)11、 【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案注意此
15、题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为【点睛】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验12、100+100【解析】【分析】由已知可得ACD=MCA=45,B=NCB=30,继而可得DCB=60,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45,NCB=30,ACD=M
16、CA=45,B=NCB=30,CDAB,CDA=CDB=90,DCB=60,CD=100米,AD=CD=100米,DB=CDtan60=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 13、1【解析】由双曲线y=(x0)经过点D知SODF=k=,由矩形性质知SAOB=2SODF=,据此可得OABE=1,根据OA=OB可得答案【详解】如图,双曲线y=(x0)经过点D,SODF=k=,则SAOB=2SODF=,即OABE=,OABE=
17、1,四边形ABCD是矩形,OA=OB,OBBE=1,故答案为:1【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质14、3x(x+2)(x2)【解析】先提公因式3x,然后利用平方差公式进行分解即可【详解】3x312x=3x(x24)=3x(x+2)(x2),故答案为3x(x+2)(x2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解15、【解析】试题分析:要求重叠部分AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知AE
18、F=CEF,由平行得CEF=AFE,代换后,可知AE=AF,问题转化为在RtABE中求AE因此设AE=x,由折叠可知,EC=x,BE=4x,在RtABE中,AB2+BE2=AE2,即32+(4x)2=x2,解得:x=,即AE=AF=,因此可求得=AFAB=3=考点:翻折变换(折叠问题)16、40【解析】由A30,APD70,利用三角形外角的性质,即可求得C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得B的度数【详解】解:A30,APD70,CAPDA40,B与C是对的圆周角,BC40故答案为40【点睛】此题考查了圆周角定理与三角形外角的性质此题难度不大,解题的关键是掌握在同圆
19、或等圆中,同弧或等弧所对的圆周角相等定理的应用17、【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示BCE的面积是ADE的面积的2倍,E是AB的中点,SABC=2SBCE,SABD=2SADE,SABC=2SABD,且ABC和ABD的高均为BF,AC=2BD,OD=2OCCD=k,点A的坐标为(,3),点B的坐标为(-,-),AC=3,BD=,AB=2AC=6,AF=AC+BD=,CD=k=【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(共7小题,满分69分)18、(1)y=x2+2x
20、+1(2)当t=2时,点M的坐标为(1,6);当t2时,不存在,理由见解析;(1)y=x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,)【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t2时,不存在,利用平行四边形对角线互相平分结合CEPE可得出此时不存在符合题意的点M;(1)过点P作PFy轴,交BC于点
21、F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论【详解】(1)将A(1,0)、B(1,0)代入y=x2+bx+c,得,解得:,抛物线的表达式为y=x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,抛物线y=x2+bx+c与x轴交于A(1,0),B(1,0)两点,抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称
22、,此时存在点M,使得四边形CDPM是平行四边形,抛物线的表达式为y=x2+2x+1,点C的坐标为(0,1),点P的坐标为(2,1),点M的坐标为(1,6);当t2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,点C的横坐标为0,点E的横坐标为0,点P的横坐标t=120=2,又t2,不存在;(1)在图2中,过点P作PFy轴,交BC于点F设直线BC的解析式为y=mx+n(m0),将B(1,0)、C(0,1)代入y=mx+n,得,解得:,直线BC的解析式为y=x+1,点P的坐标为(t,t2+2t+1),点F的坐标为(t,t+1),PF=t2+2t+1(t+1)=t2+1t,S=PF
23、OB=t2+t=(t)2+;0,当t=时,S取最大值,最大值为点B的坐标为(1,0),点C的坐标为(0,1),线段BC=,P点到直线BC的距离的最大值为,此时点P的坐标为(,)【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t2两种情况考虑;(1)利用三角形的面积公式找出S关于t的函数表达式;利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值19、(1)y=1x1(1)1(3)x1【解析】试题分析:(1)先把
24、A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kxk计算出k的值,从而得到一次函数解析式为y=1x1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x1时,直线y=kxk都在y=x的上方,即函数y=kxk的值大于函数y=x的值试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kxk得1kk=1,解得k=1,所以一次函数解析式为y=1x1;(1)把x=0代入y=1x1得y=1,则B点坐标为(0,1),所以SAOB=11=1;(3)自变量x的取值范围是x1考点:两条直线相交或平行问题20、 (1
25、)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OCAB于点C,根据OA=OB=10cm,OCB=90,AOB=18,可以求得BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决试题解析:(1)作OCAB于点C,如右图2所示,由题意可得,OA=OB=10cm,OCB=90,AOB=18,BOC=9,AB=2BC=2OBsin92100.15643.13cm,即所作圆的半径约为3.13cm;(2)作ADOB于点D,作AE=AB,如下
26、图3所示,保持AOB=18不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,折断的部分为BE,AOB=18,OA=OB,ODA=90,OAB=81,OAD=72,BAD=9,BE=2BD=2ABsin923.130.15640.98cm,即铅笔芯折断部分的长度是0.98cm考点:解直角三角形的应用;探究型21、(1) ,y=2x1;(2).【解析】(1)利用待定系数法即可解答;(2)作MDy轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数得:a=3
27、4=12,A(4,3)OA=1,OA=OB,OB=1,点B的坐标为(0,1)把B(0,1),A(4,3)代入y=kx+b得:y=2x1(2)作MDy轴于点D.点M在一次函数y=2x1上,设点M的坐标为(x,2x1)则点D(0,2x-1)MB=MC,CD=BD8-(2x-1)=2x-1+1解得:x=2x1= ,点M的坐标为 .【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式22、35km【解析】试题分析:如图作CHAD于H设CH=xkm,在RtACH中,可得AH=,在RtCEH中,可得CH=EH=x,由CHBD,推出,由AC=CB,推出AH=HD,可得=x+5
28、,求出x即可解决问题试题解析:如图,作CHAD于H设CH=xkm,在RtACH中,A=37,tan37=,AH=,在RtCEH中,CEH=45,CH=EH=x,CHAD,BDAD,CHBD,AC=CB,AH=HD,=x+5,x=15,AE=AH+HE=+1535km,E处距离港口A有35km23、(1);(2)k1【解析】(1)根据一元二次方程2x2+4x+k1=0有实数根,可得出0,解不等式即可得出结论;(2)分别把k的正整数值代入方程2x2+4x+k1=0,根据解方程的结果进行分析解答【详解】(1)由题意得:=168(k1)0,k1(2)k为正整数,k=1,2,1当k=1时,方程2x2+4
29、x+k1=0变为:2x2+4x =0,解得:x=0或x=2,有一个根为零;当k=2时,方程2x2+4x+k1=0变为:2x2+4x +1=0,解得:x=,无整数根;当k=1时,方程2x2+4x+k1=0变为:2x2+4x +2=0,解得:x1=x2=1,有两个非零的整数根综上所述:k=1【点睛】本题考查了一元二次方程根的判别式:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(1)0方程没有实数根24、 【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率