《2022-2023学年江苏省南京栖霞区中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省南京栖霞区中考数学押题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知a,b为两个连续的整数,且ab,则a+b的值为()A7B8C9D102某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )班级平均数中位数众数方差八
2、(1)班94939412八(2)班9595.5938.4A八(2)班的总分高于八(1)班B八(2)班的成绩比八(1)班稳定C两个班的最高分在八(2)班D八(2)班的成绩集中在中上游3如图所示的几何体的主视图正确的是( )ABCD4加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系pat2+bt+c(a,b,c是常数),如图记录了三次实验的数据根据上述函数模型和实验数据,可得到最佳加工时间为()A4.25分钟B4.00分钟C3.75分钟D3.50分钟5小苏和小林在如图所示的跑道上进行米折返跑.在整个过程中,跑步者距起
3、跑线的距离(单位:)与跑步时间(单位:)的对应关系如图所示.下列叙述正确的是( ).A两人从起跑线同时出发,同时到达终点B小苏跑全程的平均速度大于小林跑全程的平均速度C小苏前跑过的路程大于小林前跑过的路程D小林在跑最后的过程中,与小苏相遇2次62022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )A1210B1.210C1.210D0.12107关于2、6、1、10、6的这组数据,下列说法正确的是( )A这组数据的众数是6B这组数据的中位数是1C
4、这组数据的平均数是6D这组数据的方差是108下列计算正确的是()Aa3a2a6B(a3)2a5C(ab2)3ab6Da+2a3a9正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180后,C点的坐标是( )A(2,0)B(3,0)C(2,1)D(2,1)10如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD二、填空题(共7小题,每小题3分,满分21分)11方程组的解是_12如图,已知,点为边中点,点在线段上运动,点在线段上运动,连接,则周长的最小值为_13如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半
5、轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_14如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM4米,AB8米,MAD45,MBC30,则警示牌的高CD为米.(结果精确到0.1米,参考数据:1.41,1.73)15若一个扇形的圆心角为60,面积为6,则这个扇形的半径为_16将绕点逆时针旋转到使、在同一直线上,若,则图中阴影部分面积为_.17计算:3130_.三、解答题(共7小题,满分69分)18(10分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,ABC和ABC是他们自制的直角三角板,且ABCABC,小颖
6、和小明分别站在旗杆的左右两侧,小颖将ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将ABC的直角边BC平行于地面,眼睛通过斜边BA观察,一边观察一边走动,使得B、A、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,BE=1.5米,(他们的眼睛与直角三角板顶点A,B的距离均忽略不计),且AD、MN、BE均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.19(5分)已知抛物线yax2+(3b+1)x+b3(a0),若存在实数m,使得点P(m,m)在该
7、抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”(1)当a2,b1时,求该抛物线的“和谐点”;(2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B求实数a的取值范围;若点A,B关于直线yx(+1)对称,求实数b的最小值20(8分)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行
8、车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值21(10分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)
9、的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_22(10分)如图,A=B,AE=BE,点D在AC边上,1=2,AE和BD相交于点O求证:AECBED;若1=40,求BDE的度数23(12分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每
10、千克的收益最大?24(14分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩小明和小刚都在本周日上午去游玩的概率为_;求他们三人在同一个半天去游玩的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】91116,即,a,b为两个连续的整数,且,a=3,b=4,a+b=7,故选A.2、C【解析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班
11、稳定,正确;C选项:两个班的最高分无法判断出现在哪个班,错误;D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选C【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键3、D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.4、C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=0.2,b=1.5,c=2,即p=0.2t2+1.5t2,当t=3.75时,p取得最大值,故选C.
12、【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.5、D【解析】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.6、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】
13、数据12000用科学记数法表示为1.2104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【解析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差= (15)2+(25)2+(65)2+(65)2+(105)2=10.1故选A考点:方差;算术平均数;中位数;众数8、D【解析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确
14、答案【详解】解:Ax4x4=x4+4=x8x16,故该选项错误;B(a3)2=a32=a6a5,故该选项错误;C(ab2)3=a3b6ab6,故该选项错误;Da+2a=(1+2)a=3a,故该选项正确;故选D考点:1同底数幂的乘法;2积的乘方与幂的乘方;3合并同类项9、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180后C的对应点设是C,则AC=AC=2,则OC=3,故C的坐标是(3,0)故选B考点:坐标与图形变化-旋转10、A【解析】根据任何一个一次函
15、数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解二、填空题(共7小题,每小题3分,满分21分)11、【解析】利用加减消元法进行消元求解即可【详解】解:由+,得3x=6x=2把x=2代入,得2+3y=5y=1所以原方程组的解为: 故答案为:【点睛】本题考查了二元一次方程组的解法,用适当的方法
16、解二元一次方程组是解题的关键.12、【解析】作梯形ABCD关于AB的轴对称图形,将BC绕点C逆时针旋转120,则有GE=FE,P与Q是关于AB的对称点,当点F、G、P三点在一条直线上时,FEP的周长最小即为FG+GE+EP,此时点P与点M重合,FM为所求长度;过点F作FHBC,M是BC中点,则Q是BC中点,由已知条件B=90,C=60,BC=2AD=4,可得CQ=FC=2,FCH=60,所以FH=,HC=1,在RtMFH中,即可求得FM【详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,PF=GQ,将BC绕点C逆时针旋转120,Q点关于CG的对应点为F,
17、GF=GQ,设FM交AB于点E,F关于AB的对称点为G, GE=FE,当点F、G、P三点在一条直线上时,FEP的周长最小即为FG+GE+EP,此时点P与点M重合,FM为所求长度;过点F作FHBC,M是BC中点,Q是BC中点,B=90,C=60,BC=2AD=4,CQ=FC=2,FCH=60,FH=,HC=1,MH=7,在RtMFH中,FM;FEP的周长最小值为故答案为:【点睛】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键13、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解
18、】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.14、2.9【解析】试题分析:在RtAMD中,MAD=45,AM=4米,可得MD=4米;在RtBMC中,BM=AM+AB=12米,MBC=30,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.15、6【解析】设这个扇形的半径为,根据题意可得:,解得:
19、.故答案为.16、【解析】分析:易得整理后阴影部分面积为圆心角为110,两个半径分别为4和1的圆环的面积详解:由旋转可得ABCABCBCA=90,BAC=30,AB=4cm,BC=1cm,AC=1cm,ABA=110,CBC=110,阴影部分面积=(SABC+S扇形BAA)-S扇形BCC-SABC=(41-11)=4cm1故答案为4点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解17、.【解析】原式利用零指数幂、负整数指数幂法则计算即可求出值【详解】原式1.故答案是:.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键三、解答题(共7小题,满分69分)18、11米【
20、解析】过点C作CEMN于E,过点C作CFMN于F,则EFBEAD1.510.5(m),AEDN19,BFEN5,根据相似三角形的性质即可得到结论【详解】解:过点C作CEMN于E,过点C作CFMN于F,则EFBEAD1.510.5(m),AEDN19,BFEN5,ABCABC,MAEBMF,AEMBFM90,AMFMBF, , MF , 答:旗杆MN的高度约为11米【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键19、(1)()或(1,1);(1)2a17b的最小值是【解析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两
21、个不同的“和谐点”A、B则关于m的方程m=am1+(3b+1)m+b-3的根的判别式=9b1-4ab+11a令y=9b1-4ab+11a,对于任意实数b,均有y2,所以根据二次函数y=9b1-4ab+11的图象性质解答;利用二次函数图象的对称性质解答即可【详解】(1)当a1,b1时,m1m1+4m+14,解得m或m1所以点P的坐标是(,)或(1,1);(1)mam1+(3b+1)m+b3,9b14ab+11a令y9b14ab+11a,对于任意实数b,均有y2,也就是说抛物线y9b14ab+11的图象都在b轴(横轴)上方(4a)14911a22a17由“和谐点”定义可设A(x1,y1),B(x1
22、,y1),则x1,x1是ax1+(3b+1)x+b32的两不等实根,线段AB的中点坐标是:(,)代入对称轴yx(+1),得(+1),3b+1+aa2,2,a1为定值,3b+1+a11,bb的最小值是【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点20、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=75
23、00,解得x=70,x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,1000+1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为121、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(
24、2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的
25、位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b
26、,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键22、(1)见解析;(1)70【解析】(1)根据全等三角形的判定即可判断AECBED;(1)由(1)可知:EC=ED,C=BDE,根据等腰
27、三角形的性质即可知C的度数,从而可求出BDE的度数.【详解】证明:(1)AE和BD相交于点O,AOD=BOE在AOD和BOE中,A=B,BEO=1又1=1,1=BEO,AEC=BED 在AEC和BED中, AECBED(ASA)(1)AECBED,EC=ED,C=BDE 在EDC中,EC=ED,1=40,C=EDC=70,BDE=C=70【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.23、(1)y1;y2x24x+2;(2)5月出售每千克收益最大,最大为【解析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-
28、y2列出W与x的函数关系式,利用配方求出二次函数的最大值【详解】解:(1)设y1kx+b,将(3,5)和(6,3)代入得,解得y1x+1设y2a(x6)2+1,把(3,4)代入得,4a(36)2+1,解得ay2(x6)2+1,即y2x24x+2(2)收益Wy1y2,x+1(x24x+2)(x5)2+,a0,当x5时,W最大值故5月出售每千克收益最大,最大为元【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法24、(1);(2)【解析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在
29、本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,他们三人在同一个半天去游玩的概率为=答:他们三人在同一个半天去游玩的概率是【点睛】本题考查的是用列表法或树状图法求概率注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件