《2022-2023学年广东省深圳科学高中高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省深圳科学高中高考仿真模拟数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D32已知集合,ByN|yx1,xA,则AB( )A1,0,1,2,3B1,0,1,2C0,1,2Dx1x23已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD4如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD5设函数的导函数,且满足,若在中,则( )ABCD6函数在上单调递减的充
3、要条件是( )ABCD7已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )ABCD8一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )ABCD9已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD10若等差数列的前项和为,且,则的值为( )A21B63C13D8411过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D812已知向量,且,则( )ABC1D2二、填空题:本题共4小题
4、,每小题5分,共20分。13已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为_14 “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有_种.15连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内
5、的概率为_16 “直线l1:与直线l2:平行”是“a2”的_条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1
6、200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.18(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐
7、标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.19(12分)在锐角中,分别是角,所对的边,的面积,且满足,则的取值范围是( )ABCD20(12分)已知椭圆的焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求点的坐标21(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.22(10分)已知函数.(1)求函数的单调递增区间;(2)在ABC中,角A,B,C所对的边分别是a
8、,b,c,若满足,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;2、A【解析】解出集合A和B即可求得两个集合的并集.【详解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故选:A【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.3、A【解析】先求出平移后的函数解析式,结合图像
9、的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.4、A【解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.5、D【解析】根据的结构形式,设,求导,则,在上是增函数,再根据在中,得到,利用余弦函数的单调性,得到,再利用的单调
10、性求解.【详解】设,所以 ,因为当时,即,所以,在上是增函数,在中,因为,所以,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.6、C【解析】先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,令,则,故在上恒成立;结合图象可知,解得故.故选:C.【点睛】本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的
11、正、余弦曲线,结合图象求它的单调区间.7、B【解析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.8、B【解析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查
12、利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.9、D【解析】设双曲线的左焦点为,连接,设,则,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,设,则,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.10、B【解析】由已知结合等差数列的通项公式及求和公式可求,然后结合等差数列的求和公式即可求解【详解】解:因为,所以,解可得,则故选:B【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题11、C【解析】设抛物线的解析式,得焦点为
13、,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般12、A【解析】根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设弦
14、所在的直线与椭圆相交于、两点,利用点差法可求得直线的斜率,进而可求得直线的点斜式方程,化为一般式即可.【详解】设弦所在的直线与椭圆相交于、两点,由于点为弦的中点,则,得,由题意得,两式相减得,所以,直线的斜率为,所以,弦所在的直线方程为,即.故答案为:.【点睛】本题考查利用弦的中点求弦所在直线的方程,一般利用点差法,也可以利用韦达定理设而不求法来解答,考查计算能力,属于中等题.14、【解析】先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.【详解】若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种;若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方
15、法有种;因此共有种.故答案为:【点睛】本题考查排列组合实际问题,考查基本分析求解能力,属基础题.15、【解析】连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.16、必要不充分【解析】先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a2,故“直线l1:与直线l2:平行”是“a2”的必要不充分条件故答案为:必要不充分.【点
16、睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)680元.【解析】(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.
17、10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题18、(1);(2)或【解析】(1)消去参数可得圆的直角坐标方程,再根据,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,.,.(2)直线:的极坐标方程为,当时.即:,或.或,直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐
18、标方程以及极坐标的几何意义,属于中档题.19、A【解析】由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,则,所以,可得,又由的面积,所以,则.故选:A.【点睛】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.20、(1)(2)()见解析()点的坐标为【解析】(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i)设,的中点为,设直线的方程为,代入椭圆方程中,运用根与系数
19、的关系和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【详解】解:(1)由题意得, ,所以,所以椭圆方程为(2)设, 的中点为,()证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得 所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐标为【点睛】此题考那可是椭圆方程和性质,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,
20、同时考查弦长公式,属于较难题.21、 (1);(2).【解析】(1)通过讨论的范围,分为,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以 综上所述,不等式解集为. (2)由,得,当时,恒成立,所以; 当时,. 因为当且仅当即或时,等号成立,所以;综上的取值范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.22、(1);(2)【解析】(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【详解】(1).取,解得.(2),因为, 故,.根据余弦定理:,.【点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.