2022-2023学年浙江省台州市黄岩实验中学中考数学模拟预测题含解析.doc

上传人:茅**** 文档编号:87798999 上传时间:2023-04-17 格式:DOC 页数:18 大小:907KB
返回 下载 相关 举报
2022-2023学年浙江省台州市黄岩实验中学中考数学模拟预测题含解析.doc_第1页
第1页 / 共18页
2022-2023学年浙江省台州市黄岩实验中学中考数学模拟预测题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年浙江省台州市黄岩实验中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省台州市黄岩实验中学中考数学模拟预测题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A-=20B-=20C-=20D2改革

2、开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较根据上述信息,下列结论中错误的是()A2017年第二季度环比有所提高B2017年第三季度环比有所提高C2018年第一季度同比有所提高D2018年

3、第四季度同比有所提高3在ABC中,AD和BE是高,ABE=45,点F是AB的中点,AD与FE,BE分别交于点G、HCBE=BAD,有下列结论:FD=FE;AH=2CD;BCAD=AE2;SBEC=SADF其中正确的有()A1个B2个C3个D4个4如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD5已知:如图,在扇形中,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )ABCD6正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是()Ak1Bk1Ck1Dk17如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()

4、ABCD8如图,在ABC中,点D在BC上,DEAC,DFAB,下列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90,则四边形AEDF是矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形9如图,点A,B在双曲线y=(x0)上,点C在双曲线y=(x0)上,若ACy轴,BCx轴,且AC=BC,则AB等于()AB2C4D310如图所示是由几个完全相同的小正方体组成的几何体的三视图若小正方体的体积是1,则这个几何体的体积为()A2B3C4D5二、填空题(共7小题,每小题3分,满分21分)11如图是我区某一天内的气温变化图,结合该图给出的信息写

5、出一个正确的结论:_12如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA3,OB4,D为边OB的中点若E为边OA上的一个动点,当CDE的周长最小时,则点E的坐标_ 13如图,直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,那么当y1y2时,x的取值范围是_14已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是_15甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从20142018年,这两家公司中销售量增长较快的是_公司(填“甲”或“乙”)16若关于

6、的一元二次方程有两个不相等的实数根,则的取值范围为_.17如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_三、解答题(共7小题,满分69分)18(10分)如图所示,在ABC中,BO、CO是角平分线ABC50,ACB60,求BOC的度数,并说明理由题(1)中,如将“ABC50,ACB60”改为“A70”,求BOC的度数若An,求BOC的度数19(5分)已知:如图,在ABC中,AB13,AC8,cosBAC,BDAC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F(1)求EAD的余切值;(2)求的值20(8分)在平面直角坐标系中,一次函数(a0)的图象与反比例函数

7、的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH轴,垂足为点H,OH=3,tanAOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求AHO的周长.21(10分)解方程:(1)x27x180(2)3x(x1)22x22(10分)在ABC中,AB=BC=2,ABC=120,将ABC绕着点B顺时针旋转角a(0a90)得到A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论(2)如图2,当a=30时,试判断四边形BC1DA的形状,并证明(3)在(2)的条件下,求线段D

8、E的长度23(12分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民人数是 人;(2)将图 补充完整;( 直接补填在图中)(3)求图中表示“A”的圆心角的度数;(4)若居民区有8000人,请估计爱吃D汤圆的人数24(14分)如图,在ABC中,ABC=90,BD为AC边上的中线(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE

9、,使CEBC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1【详解】原价买可买瓶,经过还价,可买瓶方程可表示为:=1故选C【点睛】考查了由实际问题抽象出分式方程列方程解应用题的关键步骤在于找相等关系本题要注意讨价前后商品的单价的变化2、C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三

10、季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;故选C【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键3、C【解析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题【详解】在ABC中,AD和BE是高,ADB=AEB=CEB=90,点F是AB的中点,FD=AB,FE=AB,FD=FE

11、,正确;CBE=BAD,CBE+C=90,BAD+ABC=90,ABC=C,AB=AC,ADBC,BC=2CD,BAD=CAD=CBE,在AEH和BEC中, ,AEHBEC(ASA),AH=BC=2CD,正确;BAD=CBE,ADB=CEB,ABDBCE,即BCAD=ABBE,AEB=90,AE=BE,AB=BEBCAD=BEBE,BCAD=AE2;正确;设AE=a,则AB=a,CE=aa,=, 即 ,AF=AB, ,SBECSADF,故错误,故选:C【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数

12、形结合的思想解答4、B【解析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键5、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公式弧长的公式 来求 的长【详解】解:如图,连接OD解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOB-DOB=50,的长为

13、 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处6、D【解析】根据正比例函数图象与系数的关系列出关于k的不等式k+10,然后解不等式即可【详解】解:正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,k+10,解得,k-1;故选D【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系k0时,直线必经过一、三象限,y随x的增大而增大;k0时,直线必经过二

14、、四象限,y随x的增大而减小7、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=8、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确;B选项,四边形AEDF是平行四边形,BAC=90,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明

15、四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,ADBC”可证明AD平分BAC,从而可通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.9、B【解析】【分析】依据点C在双曲线y=上,ACy轴,BCx轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到=3aa,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到RtABC中,AB=2【详解】点C在双曲线y=上,ACy轴,BCx轴,设C(a,),则B(3a,

16、),A(a,),AC=BC,=3aa,解得a=1,(负值已舍去)C(1,1),B(3,1),A(1,3),AC=BC=2,RtABC中,AB=2,故选B【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k10、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点

17、睛】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.二、填空题(共7小题,每小题3分,满分21分)11、这一天的最高气温约是26【解析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案【详解】解:根据图象可得这一天的最高气温约是26,故答案为:这一天的最高气温约是26【点睛】本题考查的是函数图象问题,统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键12、 (1,0) 【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值为此,作点D关于x轴的对称点D,当点E在线段CD上时的周长最小详解:如图,作点D关于x轴的对称点D,连

18、接CD与x轴交于点E,连接DE.若在边OA上任取点E与点E不重合,连接CE、DE、DE由DE+CE=DE+CECD=DE+CE=DE+CE,可知CDE的周长最小,在矩形OACB中,OA=3,OB=4,D为OB的中点,BC=3,DO=DO=2,DB=6,OEBC, RtDOERtDBC,有 OE=1,点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.13、1x2【解析】根据图象得出取值范围即可【详解】解:因为直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,

19、3)两点,所以当y1y2时,1x2,故答案为1x2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围14、x<-2或x>1【解析】试题分析:根据函数图象可得:当时,x2或x1考点:函数图象的性质15、甲【解析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从20142018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从20142018年,乙公

20、司中销售量增长了300辆所以这两家公司中销售量增长较快的是甲公司,故答案为:甲【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;16、.【解析】根据判别式的意义得到,然后解不等式即可.【详解】解:关于的一元二次方程有两个不相等的实数根,解得:,故答案为:.【点睛】此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.17、15cm、17cm、19cm【解析】试题解析:设三角形的第三边长为xcm,由题意得:7-3x7+3,即4x10,则x=5,7,9,三角形的周长:3+7+5=15(cm),3+7+7=17(cm

21、),3+7+9=19(cm)考点:三角形三边关系三、解答题(共7小题,满分69分)18、(1)125;(2)125;(3)BOC=90+n【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC+ACB+A=180,则21+22+A=180,接着再根据三角形内角和得到1+2+BOC=180,利用等式的性质进行变换可得BOC=90+A,然后根据此结论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180,21+22+A=180,1+2+BOC=180,21+22+2BOC=360,2BOCA=

22、180,BOC=90+A,(1)ABC=50,ACB=60,A=1805060=70,BOC=90+70=125;(2)BOC=90+A=125;(3)BOC=90+n【点睛】本题考查了三角形内角和定理:三角形内角和是180主要用在求三角形中角的度数:直接根据两已知角求第三个角;依据三角形中角的关系,用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角19、(1)EAD的余切值为;(2)=.【解析】(1)在RtADB中,根据AB=13,cosBAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求EAD的余切即可;(2)过D作DGAF交BC于

23、G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EFDG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)BDAC,ADE=90,RtADB中,AB=13,cosBAC=,AD=5, 由勾股定理得:BD=12,E是BD的中点, ED=6, EAD的余切=;(2)过D作DGAF交BC于G,AC=8,AD=5, CD=3,DGAF, =,设CD=3x,AD=5x,EFDG,BE=ED, BF=FG=5x,=.【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念

24、,解(2)的关键是熟练掌握平行线分线段成比例定理.20、(1)一次函数为,反比例函数为;(2)AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)tanAOH= AH=OH=4 A(-4,3),代入,得k=-43=-12 反比例函数为 m=6 B(6,-2)=,b=1 一次函数为 (2) AHO的周长为:3+4+5=12点睛:此题考查的是反比

25、例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式21、(1)x19,x22;(2)x11,x2 【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x27x180,(x9)(x+2)0, x90,x+20, x19,x22;(2)3x(x1)22x,3x(x1)+2(x1)0,(x1)(3x+2)0,x10,3x+20,x11,x2 【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键22、(1)(2)四边形是菱形.(3)【解析】(1)根据等边对等角及旋转的特征

26、可得即可证得结论;(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果【详解】(1)证明:(证法一)由旋转可知,又即(证法二)由旋转可知,而即(2)四边形是菱形.证明:同理四边形是平行四边形.又四边形是菱形(3)过点作于点,则在中,.由(2)知四边形是菱形,【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.23、(1)600;(2)120人,20%;30%;(3)108(4)爱吃D汤圆的人数约为3200人【解析】试题分析:(1)由两幅统计图中的信息

27、可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为6010%=600(人);(2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120600100%=20%,喜欢A类的占总人数的百分比为:180600100%=30%,由此即可将统计图补充完整;(3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:36030%=108;(4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:800040%=3200(人);试题解析:(1)本次参加抽样调查的居民的

28、人数是:6010%=600(人); 故答案为600;(2)由题意得:C的人数为600(180+60+240)=600480=120(人),C的百分比为120600100%=20%;A的百分比为180600100%=30%;将两幅统计图补充完整如下所示:(3)根据题意得:36030%=108,图中表示“A”的圆心角的度数108;(4)800040%=3200(人),即爱吃D汤圆的人数约为3200人24、 (1)见解析;(2)见解析.【解析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明ABDCED(AAS)得AB=EC,已知ABC=90即可得四边形ABCE是矩形【详解】(1)解:如图所示:E点即为所求;(2)证明:CEBC,BCE=90,ABC=90,BCE+ABC=180,ABCE,ABE=CEB,BAC=ECA,BD为AC边上的中线,AD=DC,在ABD和CED中,ABDCED(AAS),AB=EC,四边形ABCE是平行四边形,ABC=90,平行四边形ABCE是矩形【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁