《2022-2023学年河北省鸡泽县重点名校中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河北省鸡泽县重点名校中考三模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A11B8C7D52若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上
2、,则、的大小关系是()ABCD3下列各式正确的是()A(2018)=2018B|2018|=2018C20180=0D20181=20184两个有理数的和为零,则这两个数一定是()A都是零B至少有一个是零C一个是正数,一个是负数D互为相反数5如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子A37B42C73D1216方程x24x+50根的情况是()A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根72017年扬中地区生产总值约为546亿
3、元,将546亿用科学记数法表示为()A5.46108B5.46109C5.461010D5.4610118如图,在等腰直角ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是()ABCD9长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A6.7106 B6.7106 C6.7105 D0.6710710如图,在RtABC中,BAC90,ABAC,ADBC,垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62,那么DBF的度数为()A62B38C28D26
4、二、填空题(本大题共6个小题,每小题3分,共18分)11计算的结果为_12有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_13分解因式: _14用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 cm2(精确到1cm2)15算术平方根等于本身的实数是_.16已知图中的两个三角形全等,则1等于_三、解答题(共8题,共
5、72分)17(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家用树形图或列表法求只进行两局游戏便能确定赢家的概率18(8分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:; 若, 求的长.19(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作
6、统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数20(8分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围); (2)若农场到B公司的路程是农场到A公司路程的2倍,农场到
7、A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案21(8分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元(毛利润=销售额生产费用)(1
8、)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?22(10分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围
9、23(12分)已知:不等式2+x(1)求不等式的解;(2)若实数a满足a2,说明a是否是该不等式的解24在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”例如下图中,点,点,此时点Q与点P之间的“直距”. (1)已知O为坐标原点,点,则_,_; 点C在直线上,求出的最小值;(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.
10、直接写出点E与点F之间“直距”的最小值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据等量关系,即(经过的路程3)1.6+起步价2元1列出不等式求解【详解】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x3)1.6+21,解得:x2即此人从甲地到乙地经过的路程最多为2km故选B【点睛】考查了一元一次方程的应用关键是掌握正确理解题意,找出题目中的数量关系2、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可
11、得故选C点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质3、A【解析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答【详解】选项A,(2018)=2018,故选项A正确;选项B,|2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,20181= ,故选项D错误故选A【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.4、D【解析】解:互为相反数的
12、两个有理数的和为零,故选DA、C不全面B、不正确5、C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+26=13个,第5、6图案中黑子有1+26+46=37个,第7、8图案中黑子有1+26+46+66=73个故选C点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况6、D【解析】解: a=1,b=4,c=5,=b24ac=(4)2415=40,所以原方程没有实数根7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的
13、位数相同【详解】解:将546亿用科学记数法表示为:5.461010 ,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.8、B【解析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解【详解】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+
14、1=(2-x)2,解得:x=,sinBED=sinCDF=故选B【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中9、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6 700 000=6.7106,故选:A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、C【解
15、析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFADE详解:AB=AC,ADBC,BD=CD 又BAC=90,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE(SAS), DBF=DAE=9062=28 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据同分母分式加减运算法则化简即可【详解】原式,故答案为【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键12、【解析】列表得出所有等可能的情况数,找出
16、恰好是两个连续整数的情况数,即可求出所求概率【详解】解:列表如下:567895(6、5)(7、5)(8、5)(9、5)6(5、6)(7、6)(8、6)(9、6)7(5、7)(6、7)(8、7)(9、7)8(5、8)(6、8)(7、8)(9、8)9(5、9)(6、9)(7、9)(8、9)所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)= 故答案为.【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比13、【解析】试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.考点:因式分解14、174cm1【解析】直径为10cm的玻璃球,玻
17、璃球半径OB=5,所以AO=185=13,由勾股定理得,AB=11,BDAO=ABBO,BD=,圆锥底面半径=BD=,圆锥底面周长=1,侧面面积=111=.点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长母线长1本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解把实际问题转化为数学问题求解是本题的解题关键15、0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的
18、知识,注意掌握1和0的算术平方根等于本身16、58【解析】如图,2=1805072=58,两个三角形全等,1=2=58.故答案为58.三、解答题(共8题,共72分)17、(1),(2)【解析】解:(1)画树状图得:总共有9种等可能情况,每人获胜的情形都是3种,两人获胜的概率都是(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为任选其中一人的情形可画树状图得:总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,两局游戏能确定赢家的概率为:(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案(2)因为由(1)
19、可知,一局游戏每人胜、负、和的机会均等,都为可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案18、(1)详见解析;(2)【解析】(1)根据题意平分可得,从而证明即可解答(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答【详解】(1)证明:平分又又(2)四边形是平行四边形, 为等边三角形过点作延长线于点.在中,【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线19、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)16000
20、0人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为
21、1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.20、(1)b;(2)详见解析.【解析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A、B公司购买铵肥的费用,再求出农场从A、B公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x的解析式是一次函数,根据m的取值范围不同分两类讨论,可得出结论.【详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为yk1x,代入点(4,12),即12k14,可得k13,设第二段函数图象为yk
22、2xc,代入点(4,12)、(8,32)可列出二元一次方程组,解得:k25,c8,所以函数解析式为:b;(2)农场从A公司购买铵肥的费用为750x元,因为B公司有铵肥7吨,1x3,故农场从B公司购买铵肥的重量(8x)肯定大于5吨,农场从B公司购买铵肥的费用为700(8x)元,所以购买铵肥的总费用750x700(8x)50x5600(0x3);农场从A公司购买铵肥的运输费用为3xm元,且满足1x3,农场从B公司购买铵肥的运输费用为5(8x)82m元,所以购买铵肥的总运输费用为3xm5(8x)82m7mx64m元,因此农场购买铵肥的总费用y50x56007mx64m(507m)x560064m(1
23、x3),分一下两种情况进行讨论;当507m0即m时,y随x的增加而增加,则x1使得y取得最小值即总费用最低,此时农场铵肥的购买方案为:从A公司购买1吨,从B公司购买7吨,当507m0即m时,y随x的增加而减少,则x3使得y取得最小值即总费用最低,此时农场铵肥的购买方案为:从A公司购买3吨,从B公司购买5吨.【点睛】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式.21、(1)y=x1z=x+30(0x100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】(1)利用待定系数法可求出y与x以及z与x之
24、间的函数关系式;(1)根据(1)的表达式及毛利润销售额生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图可得函数经过点(100,1000),设抛物线的解析式为yax1(a0),将点(100,1000)代入得:100010000a,解得:a,故y与x之间的关系式为yx1图可得:函数经过点(0,30)、(100,10),设zkxb,则,解得: ,故z与x之间的关系式为zx30(0x100);(1)Wzxyx130xx1x130x(x1150x)(x75)11115,0,当x75时,W有最大值1115,年产量为
25、75万件时毛利润最大,最大毛利润为1115万元;(3)令y360,得x1360,解得:x60(负值舍去),由图象可知,当0y360时,0x60,由W(x75)11115的性质可知,当0x60时,W随x的增大而增大,故当x60时,W有最大值1080,答:今年最多可获得毛利润1080万元【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.22、(1)y=-2x+31,(2)20x1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不
26、高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围是20x123、(1)x1;(2)a是不等式的解【解析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得(2)根据不等式的解的定义求解可得【详解】解:(1)去分母得:2x3(2+x),去括号得:2x6+3x,移项、合并同类项得:4x4,系数化为1得:x1(2)a2,不等式的解集为x1,而21
27、,a是不等式的解【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键24、(1)3,1;最小值为3;(1)【解析】(1)根据点Q与点P之间的“直距”的定义计算即可;如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO3时,该正方形的一边与直线yx3重合(如右边图),此时DCO定值最小,最小值为3;(1)如图4中,平移直线y1x4,当平移后的直线与O在左边相切时,设切点为E,作EFx轴交直线y1x4于F,此时DEF定值最小;【详解】解:(1)如图1中,观察图象可知DAO113,DBO1,故答案为3,1(i)当点C在第一象限时(),根据题
28、意可知,为定值,设点C坐标为,则,即此时为3;(ii)当点C在坐标轴上时(,),易得为3;()当点C在第二象限时(),可得; ()当点C在第四象限时(),可得;综上所述,当时,取得最小值为3;(1)如解图,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,在中由勾股定理得,解得,.【点睛】本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题失分原因第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;(1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;(1)不能想到由相似求出GO的值