《2022-2023学年广东省普宁市新世界中英文学校高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省普宁市新世界中英文学校高三二诊模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )ABCD2设(是虚数单位),则( )AB1C2D3已知,则( )ABCD4已知集合Ay|y,Bx|ylg(x2x2),则
2、R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)5已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D56已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为( )ABCD7如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD8已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D89数列满足,且,则( )AB9CD710若函数函数只有1个零点,则的取值范围是( )ABCD11已知复数(为虚数单位,),则在复平面内对应的点所在的象
3、限为( )A第一象限B第二象限C第三象限D第四象限12已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_14若,则=_,=_.15已知函数若关于的不等式的解集为,则实数的所有可能值之和为_.16(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()当时,讨论函数的单调区间;()若对任意的和恒成立,求实数的取值范围18(12分)已知函数()求在点处的切线方程;()
4、求证:在上存在唯一的极大值;()直接写出函数在上的零点个数19(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.20(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.21(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)22(10分)己知圆F1:(x+1)1 +y1= r1(1r3),圆F1:(x-1)1+y1= (4-r)1(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m0),过点E斜率为k(k0)的直线与()中轨迹E相交于M,N两点,记直线QM的斜
5、率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有, , 得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.2、A【解析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【详解】,故选:A【
6、点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题3、B【解析】利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.4、D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20x|0x(0,),AB(0,),R(AB)(,0,+).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.5、D【解析】
7、试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6、C【解析】根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代
8、入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.7、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.8、B【解析】取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故
9、选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.9、A【解析】先由题意可得数列为等差数列,再根据,可求出公差,即可求出【详解】数列满足,则数列为等差数列,故选:【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题10、C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故
10、选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.11、B【解析】分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.12、D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13
11、、2.【解析】由双曲线的一条渐近线为,解得求出双曲线的右焦点,利用点到直线的距离公式求解即可【详解】双曲线的一条渐近线为 解得: 双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【点睛】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题14、1 0 【解析】根据换底公式计算即可得解;根据同底对数加法法则,结合的结果即可求解.【详解】由题:,则;由可得:.故答案为:1,0【点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.15、【解析】由分段函数可得不满足题意;时,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到
12、所求和【详解】解:由函数,可得的增区间为,时,时,当关于的不等式的解集为,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点综上可得的所有值的和为1故答案为:1【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题16、10【解析】作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 ()见解析()【解析】()首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可
13、; ()将原问题进行等价转化为,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可【详解】解:()当时,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是()对任意的和,恒成立等价于:,恒成立即,恒成立令:,则得,由此可得:在区间上单调递减,在区间上单调递增,当时,即又,实数的取值范围是:【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题18、();()证明见解析;()函数在有3个零点【解析】()求出导数,写出切线方程;(
14、)二次求导,判断单调递减,结合零点存在性定理,判断即可;(),数形结合得出结论【详解】解:(),故在点,处的切线方程为,即;()证明:,故在递减,又,由零点存在性定理,存在唯一一个零点,当时,递增;当时,递减,故在只有唯一的一个极大值;()函数在有3个零点【点睛】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题19、(1);(2).【解析】(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关
15、系.【详解】(1)当时, 令,而是增函数,函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.20、(1)或;(2)见解析【解析】(1)根据,利用零点分段法解不等式,或作出函数的图像,利用函数的图像解不等式;(2)由(1)作出的函数图像求出的最小值为,可知,代入中,然后给等式两边同乘以,再将写成后
16、,化简变形,再用均值不等式可证明.【详解】(1)解法一:1时,即,解得;2时,即,解得;3时,即,解得.综上可得,不等式的解集为或.解法二:由作出图象如下:由图象可得不等式的解集为或.(2)由所以在上单调递减,在上单调递增,所以,正实数满足,则,即,(当且仅当即时取等号)故,得证.【点睛】此题考查了绝对值不等式的解法,绝对值不等式的性质和均值不等式的运用,考查了分类讨论思想和转化思想,属于中档题.21、(1)证明见解析;(2).【解析】(1)将代入函数解析式可得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.(2)对函数求导,变形后讨论当时的函数单
17、调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.【详解】(1)证明:当时代入可得,令,则,令解得,当时,所以在单调递增,当时,所以在单调递减,所以,则,即成立.(2)函数则,若时,当时,则在时单调递减,所以,即当时成立;所以此时需满足的整数解即可,将不等式化简可得,令 则令解得,当时,即在内单调递减,当时,即在内单调递增,所以当时取得最小值,则,所以此时满足的整数 的最大值为;当时,在时,此时,与题意矛盾,所以不成立.因为求整数的最大值,
18、所以时无需再讨论,综上所述,当时,整数的最大值为.【点睛】本题考查了导数在证明不等式中的应用,导数与函数单调性、极值、最值的关系和应用,构造函数法求最值,并判断函数值法符号,综合性强,属于难题.22、(1)见解析,(1)存在,【解析】(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,联立直线方程和椭圆方程,根据韦达定理以及,可得,根据其为定值,则有,进而可得结果.【详解】(1)因为,所以,因为圆的半径为,圆的半径为,又因为,所以,即,所以圆与圆有公共点, 设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,所以,即轨迹的方程为;(1)过点且斜率为的直线方程为,设,由消去得到,则, 因为,所以, 将式代入整理得因为,所以当时,即时,.即存在实数使得.【点睛】本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力和计算能力,是中档题.