《2022-2023学年湖北省恩施市达标名校中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省恩施市达标名校中考数学全真模拟试卷含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1一个三角形框架模型的三边长分别为20厘米、30厘米、4
2、0厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A30厘米、45厘米; B40厘米、80厘米; C80厘米、120厘米; D90厘米、120厘米2叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C5105D501033(1)0+|1|=()A2 B1 C0 D14从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你
3、认为派谁去参赛更合适()A甲B乙C丙D丁5把直线l:y=kx+b绕着原点旋转180,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )Ay=2x+2By=2x-2Cy=-2x+2Dy=-2x-26一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A和B谐C凉D山7为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A平均数 B中位数 C众数 D方差8如图是二次函数y =ax2+bx + c(a0)图象如图所示,则下列结论,c0,2a + b=0;a+b+c=0,b24ac0,其
4、中正确的有( )A1个B2个C3个D49“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根10在函数y=中,自变量x的取值范围是()Ax0Bx0Cx=0D任意实数二、填空题(本大题共6个小题,每小题3分,共18分)11安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相
5、提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_12如图,在正方形网格中,线段AB可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段AB的过程_13如图,点D、E、F分别位于ABC的三边上,满足DEBC,EFAB,如果AD:DB=3:2,那么BF:FC=_14如图,AE是正八边形ABCDEFGH的一条对角线,则BAE= 15一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是
6、_16某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为_元.三、解答题(共8题,共72分)17(8分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15和60,如图,直线AB与地面垂直,AB50米,试求出点B到点C的距离(结果保留根号)18(8分)当=,b=2时,求代数式的值19(8分)如图,在ABC中,C=90作BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求ABD的面积20(8分)(1)计算:14+sin61+()2()1(2)解不等式组,并把它的解集在数轴上表示出来21(8分)在同一时刻两根木竿在太阳光下的影子如图
7、所示,其中木竿AB2m,它的影子BC1.6m,木竿PQ落在地面上的影子PM1.8m,落在墙上的影子MN1.1m,求木竿PQ的长度22(10分)解分式方程: - = 23(12分)如图,点AF、CD在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,A=D,AF=DC(1)求证:四边形BCEF是平行四边形,(2)若ABC=90,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形24如图,点O为RtABC斜边AB上的一点,以OA为半径的O与BC切于点D,与AC交于点E,连接AD.求证:AD平分BAC;若BAC=60,OA=4,求阴影部分的面积(结果保留).参考答案一、选择题(共10小
8、题,每小题3分,共30分)1、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.2、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.3、A【解析】根据绝对值和数的0次幂
9、的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.4、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.5、B【解析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180即可得到直线l【详解】解:设直线AB的解析式为ymxnA(2,0),B(0,1), ,解得 ,直线AB的解析式为y2x1将直线AB向右平移1个单位长度后得到的解析式为y2(
10、x1)1,即y2x2,再将y2x2绕着原点旋转180后得到的解析式为y2x2,即y2x2,所以直线l的表达式是y2x2故选:B【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键6、D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”故选:D点睛:注意正方体的空间图形,从相对面入手,分析及解答问题7、D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人
11、成绩稳定程度的数据是方差故选D【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用8、B【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】抛物线与y轴交于负半轴,则c1,故正确;对称轴x1,则2a+b=1故正确;由图可知:当x=1时,y=a+b+c1故错误;由图可知:抛物线与x轴有两个不同的交点,则b24ac1故错误综上所述:正确的结论有2个故选B【点睛】本题考
12、查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用9、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.10、C【解析】当函数表达式是二次根式时,被开方数为非负数据此可得【详解】解:根据题意知 ,解得:x=0,故选:C【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当
13、函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.12、将线段AB绕点B逆时针旋转90,在向右平移2个单位长度【解析】根据图形的旋转和平移性质即可解题.【详解】解:将线段AB绕点B逆时针旋转90,在向右平移2个单位长度即可得
14、到AB、【点睛】本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.13、3:2【解析】因为DEBC,所以,因为EFAB,所以,所以,故答案为: 3:2.14、67.1【解析】试题分析:图中是正八边形,各内角度数和=(82)180=1080,HAB=10808=131,BAE=1312=67.1故答案为67.1考点:多边形的内角15、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题
15、主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.16、28【解析】设标价为x元,那么0.9x-21=2120%,x=28.三、解答题(共8题,共72分)17、【解析】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作ADBC于点D,MBC=60,ABC=30, ABAN,BAN=90,BAC=105,则ACB=45, 在RtADB中,AB=1000,则AD=500,BD=,在RtADC中,AD=500,CD=500, 则BC=答:观察点B到花坛C的距离为米考点:解直角三角形18、,63【解析】原式=,当a=,b=2时,原式19、(1
16、)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DEABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DEAB于E,AD平分BAC,DE=CD=4,SABD=ABDE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.20、(1)5;(2)2x【解析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果
17、;(2)先求出两个不等式的解集,再找出解集的公共部分即可【详解】(1)原式 =5;(2)解不等式得,x2,解不等式得, 所以不等式组的解集是 用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定21、木竿PQ的长度为3.35米【解析】过N点作NDPQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长试题解析:【详解】解:过N点作NDPQ于D,则四边形DPMN为矩形,DNPM1.8m,DPMN1
18、.1m,QD2.25,PQQDDP 2.251.13.35(m)答:木竿PQ的长度为3.35米【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键22、方程无解【解析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可【详解】解:方程的两边同乘(x1)(x1),得:, ,此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:去分母;解整式方程;验根.23、(1)见解析(2)当AF=时,四边形BCEF是菱形【解析】(1)由AB=DE,A=D,AF=DC,根据SAS得ABCDEF,即可
19、得BC=EF,且BCEF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BECF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得ABCBGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:AF=DC,AF+FC=DC+FC,即AC=DF.在ABC和DEF中,AC=DF,A=D,AB=DE,ABCDEF(SAS).BC=EF,ACB=DFE,BCEF.四边形BCEF是平行四边形(2)解:连接BE,交CF与点G,四边形BCEF是平行四边形,当BECF时,四边形BCEF是菱形.ABC=90,AB=4,BC=3,AC=.BGC=ABC=90
20、,ACB=BCG,ABCBGC,即.FG=CG,FC=2CG=,AF=ACFC=5.当AF=时,四边形BCEF是菱形24、(1)见解析;(2)【解析】试题分析:(1)连接OD,则由已知易证ODAC,从而可得CAD=ODA,结合ODA=OAD,即可得到CAD=OAD,从而得到AD平分BAC;(2)连接OE、DE,由已知易证AOE是等边三角形,由此可得ADE=AOE=30,由AD平分BAC可得OAD=30,从而可得ADE=OAD,由此可得DEAO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.BC是O的切线,D为切点,ODBC. 又ACBC,ODAC,ADO=CAD.又OD=OA,ADO=OAD,CAD=OAD,即AD平分BAC. (2)连接OE,ED.BAC=60,OE=OA,OAE为等边三角形,AOE=60,ADE=30. 又,ADE=OAD,EDAO, SAEDSOED,阴影部分的面积 = S扇形ODE = .