2022-2023学年广东省广州市番禺区广东第二师范学院番禺附中高三冲刺模拟数学试卷含解析.doc

上传人:茅**** 文档编号:87798702 上传时间:2023-04-17 格式:DOC 页数:23 大小:2.46MB
返回 下载 相关 举报
2022-2023学年广东省广州市番禺区广东第二师范学院番禺附中高三冲刺模拟数学试卷含解析.doc_第1页
第1页 / 共23页
2022-2023学年广东省广州市番禺区广东第二师范学院番禺附中高三冲刺模拟数学试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2022-2023学年广东省广州市番禺区广东第二师范学院番禺附中高三冲刺模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省广州市番禺区广东第二师范学院番禺附中高三冲刺模拟数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则,的大小关系为( )ABCD2由曲线围成的封闭图形的面积为( )ABCD3数学中的数形结合,也可以组成世间万物

2、的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:曲线C经过5个整点(即横、纵坐标均为整数的点);曲线C上任意一点到坐标原点O的距离都不超过2;曲线C围成区域的面积大于;方程表示的曲线C在第二象限和第四象限其中正确结论的序号是( )ABCD4已知函数,若函数有三个零点,则实数的取值范围是( )ABCD5在空间直角坐标系中,四面体各顶点坐标分别为:假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点那么完成这个工作所需要走的最短路径长度是( )ABCD6已知函数()的部分图象如图所示.则( )ABCD7已知集合,则

3、为( )A0,2)B(2,3C2,3D(0,28一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) ABCD9我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对10已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD11已知集合,,则ABCD12若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )ABCD二、填空题:本题

4、共4小题,每小题5分,共20分。13已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则_;四棱锥P-ABCD的体积为_.14二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为_.15已知的三个内角为,且,成等差数列, 则的最小值为_,最大值为_.16将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有_种不同的放法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)购

5、买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,其回归直线的斜率和截距的最小二

6、乘估计分别为,.18(12分)如图,在四棱锥中,底面是直角梯形且,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.19(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.(1)求曲线的方程;(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,求证:为定值.20(12分)如图,在直三棱柱中,点分别为和的中点.()棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.()求二面角的余弦值.21(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,使.22(10分)如图,在三棱柱中,平

7、面,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.2、A【解析】先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.3、B【解析

8、】利用基本不等式得,可判断;和联立解得可判断;由图可判断.【详解】,解得(当且仅当时取等号),则正确;将和联立,解得,即圆与曲线C相切于点,则和都错误;由,得正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.4、B【解析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,所以是的一个

9、零点,当时,若,则,即,所以,解得;当时,则,且若在时有一个零点,则,综上可得,故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.5、C【解析】将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边易求得,由,知,由余弦定理知其中,故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.6、C【解析】由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,即,解得;因为所以,

10、当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.7、B【解析】先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.8、D【解析】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D9、A【解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其

11、中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其和等于的概率故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.10、A【解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A11、D【解析】因为,所以,故选D12、D【解析】画出曲线与围成的封闭

12、区域,表示封闭区域内的点和定点连线的斜率,然后结合图形求解可得所求范围【详解】画出曲线与围成的封闭区域,如图阴影部分所示表示封闭区域内的点和定点连线的斜率,设,结合图形可得或,由题意得点A,B的坐标分别为,或,的取值范围为故选D【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把看作两点间连线的斜率;二是要正确画出两曲线所围成的封闭区域考查转化能力和属性结合的能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、90 【解析】易得平面PAD,P点在与BA垂直的圆面内运动,显然,PA是圆的直径时,PA最长;将四棱锥补形为长方体,易得为球的直径即可得到PD,从而求得四

13、棱锥的体积.【详解】如图,由及,得平面PAD,即P点在与BA垂直的圆面内运动,易知,当P、A三点共线时,PA达到最长,此时,PA是圆的直径,则;又,所以平面ABCD,此时可将四棱锥补形为长方体,其体对角线为,底面边长为2的正方形,易求出,高,故四棱锥体积.故答案为: (1) 90 ; (2) .【点睛】本题四棱锥外接球有关的问题,考查学生空间想象与逻辑推理能力,是一道有难度的压轴填空题.14、【解析】由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项【详解】由题意,展开式通项为,由得,常数项为故答案为:【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公

14、式是解题关键15、 【解析】根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.16、【解析】讨论装球盒子的个数,计算得到答案.【详解】当四个盒子有球时:种;当三个盒子有球时:种;当两个盒子有球时:种.故共有种,故答案为:.【点睛】本题考

15、查了排列组合的综合应用,意在考查学生的理解能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1.7;(2),见解析;(2)2.【解析】(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由二项分布列的期望公式计算;(3)利用所给公式计算出回归直线即可解决.【详解】(1)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值的平均数的估计值为,所以方差的估计值为;(2)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值高于3万元的频率为,则,所以的分布列为,数学期望;(3)将 2018年11月至2019年3月的月份数依次编号为 1

16、,2,3,4,5,记 ,由 散 点 图可知,5组样本数据呈线性相关关系,因为,则,所以回归直线方程为,当时,预计该品牌汽车在年月份的销售量约为2万辆.【点睛】本题考查平均数、方差的估计值、二项分布列及其期望、线性回归直线方程及其应用,是一个概率与统计的综合题,本题是一道中档题.18、(1);(2).【解析】(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)求出,利用计算即可.【详解】(1)分别取的中点为,连结.因为,所以.因为,所以.因为侧面为等边三角形,所以又因为平面平面,平面平面,平面,所以平面,所以两两

17、垂直. 以为空间坐标系的原点,分别以所在直线为轴建立如图所示的空间直角坐标系,因为,则,.设平面的法向量为,则,即.取,则,所以.又为平面的法向量,设平面与平面所成的锐二面角的大小为,则,所以平面与平面所成的锐二面角的大小为.(2)由(1)得,平面的法向量为,所以成.又直线与平面所成角为,所以,即,即,化简得,所以,符合题意.【点睛】本题考查利用向量坐标法求面面角、线面角,涉及到面面垂直的性质定理的应用,做好此类题的关键是准确写出点的坐标,是一道中档题.19、(1);(2)见解析【解析】(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;(2)设直线方程为,则,设,由直线方程与

18、抛物线方程联立消元应用韦达定理得,由,用横坐标表示出,然后计算,并代入,可得结论【详解】(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得曲线的方程为;(2)证明:设直线方程为,则,设,由得,则,由,得,整理得,代入得:【点睛】本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,代入题中其他条件所求式子中化简变形20、()存在点满足题意,且,证明详见解析;().【解析】()可考虑采用补形法,取的中点为,连接,

19、可结合等腰三角形性质和线面垂直性质,先证平面,即,若能证明,则可得证,可通过我们反推出点对应位置应在处,进而得证;()采用建系法,以为坐标原点,以分别为轴建立空间直角坐标系,分别求出两平面对应法向量,再结合向量夹角公式即可求解;【详解】()存在点满足题意,且.证明如下:取的中点为,连接.则,所以平面.因为是的中点,所以.在直三棱柱中,平面平面,且交线为,所以平面,所以.在平面内,所以,从而可得.又因为,所以平面.因为平面,所以平面平面.()如图所示,以为坐标原点,以分别为轴建立空间直角坐标系.易知,所以,.设平面的法向量为,则有取,得.同理可求得平面的法向量为.则.由图可知二面角为锐角,所以其

20、余弦值为.【点睛】本题考查面面垂直的判定定理、向量法求二面角的余弦值,属于中档题21、(1)见解析;(2)证明见解析.【解析】(1),分,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).当时,恒成立,当时,;当时,所以,在上是减函数,在上是增函数.当时,.当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.当时,则在上是减函数.当时,当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,.令,故在上是减函数,有,所以,从而.,则,令,显然在上是增函数,且,所以存在使,且在上是减函数,在上是增函数

21、,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.22、(1) (2)【解析】试题分析:(1)因为ABAC,A1B平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁